Forecasting output for all individual input in RPlot of ACF & PACFInterpreting ACF and PACF plots for SARIMA modelR forecast.holtwinters in forecast package not foundExtract only the forecasted values from forecast()forecast::autolayer function produces an error with monthly time seriesForecast using ARIMA model in R environmentR's decompose/stl functions unable to completely extract annual seasonality from daily time seriesDoes the forecast function update the history (training) set with its new predictions?Specified forecast period not constraining forecast outputOut of sample forecasting issue with SARIMAX

Did I make a mistake by ccing email to boss to others?

Why is participating in the European Parliamentary elections used as a threat?

Why doesn't Gödel's incompleteness theorem apply to false statements?

What is it called when someone votes for an option that's not their first choice?

Why is "la Gestapo" feminine?

categorizing a variable turns it from insignificant to significant

"Oh no!" in Latin

What should be the ideal length of sentences in a blog post for ease of reading?

Magnifying glass in hyperbolic space

Highest stage count that are used one right after the other?

Offset in split text content

Writing in a Christian voice

Why can't I get pgrep output right to variable on bash script?

Does capillary rise violate hydrostatic paradox?

Put the phone down / Put down the phone

Why is indicated airspeed rather than ground speed used during the takeoff roll?

Friend wants my recommendation but I don't want to give it to him

Output visual diagram of picture

Why would five hundred and five same as one?

What (if any) is the reason to buy in small local stores?

Would a primitive species be able to learn English from reading books alone?

What is the meaning of "You've never met a graph you didn't like?"

What is the period/term used describe Giuseppe Arcimboldo's style of painting?

Started in 1987 vs. Starting in 1987



Forecasting output for all individual input in R


Plot of ACF & PACFInterpreting ACF and PACF plots for SARIMA modelR forecast.holtwinters in forecast package not foundExtract only the forecasted values from forecast()forecast::autolayer function produces an error with monthly time seriesForecast using ARIMA model in R environmentR's decompose/stl functions unable to completely extract annual seasonality from daily time seriesDoes the forecast function update the history (training) set with its new predictions?Specified forecast period not constraining forecast outputOut of sample forecasting issue with SARIMAX













0















I have a dataset with 3 different Item Numbers, with corresponding 36 months Quantity value. When I run the forecast output, it shows only the cumulative/only the first Item Numbers forecast. I want the output to show the forecast of each individual Item Number(That is Item1 - "004-0013" -> 6 months forecast, followed by Item2- "DP-023-0059"-> 6 months forecast and lastly Item3 -"502-00038R"-> 6 months forecast). Thanks in advance for any help.
p.s: This is my first post, so if there is an error in the format of the post, please do let me know.



library('ggplot2')
library('forecast')
library('tseries')
a <- read.csv("high.csv", stringsAsFactors = F)
a$Month <- as.Date(a$Month)

Qty_ts = ts(a[,c('Qty')])

a$Qty_ma12 = ma(a$Qty, order = 3)

Qty_ma = ts(na.omit(a$Qty_ma), start = c(2016,1),end = c(2019),frequency =
12)
decomp = stl(Qty_ma, s.window = "periodic")
deseasonal_Qty <- seasadj(decomp)
plot(decomp)

adf.test(Qty_ma, alternative = "stationary")

Acf(Qty_ma, main="")
Pacf(Qty_ma,main="")

Qty_d1 = diff(deseasonal_Qty, differences =1)
plot(Qty_d1)
adf.test(Qty_d1, alternative = "stationary")

Acf(Qty_d1, main ='ACF for differenced Series')
Pacf(Qty_d1,main ='PACF for Differenced Series')

auto.arima(deseasonal_Qty, seasonal = FALSE)

fit<- auto.arima(deseasonal_Qty, seasonal =FALSE)
tsdisplay(residuals(fit), lag.max=45, main='(0,1,1) Model Residuals')

fit2 = arima(deseasonal_Qty, order =c(1,1,0))
fit2
tsdisplay(residuals(fit2), lag.max=15, main='Seasonal model Residuals')

fcast<- forecast(fit2, h=6)
plot(fcast)
fcast


Results:



 Item.Number Month Qty
1 004-0013 7/1/2017 1
2 DP-023-0059 12/1/2017 1
3 DP-023-0059 1/1/2018 1
4 502-00038R 11/1/2018 73
5 502-00038R 1/1/2019 738
6 502-00038R 6/1/2018 358
7 502-00038R 8/1/2018 751
8 502-00038R 5/1/2018 697
9 502-00038R 9/1/2018 1400
10 502-00038R 7/1/2018 210
11 004-0013 3/1/2018 4
12 004-0013 7/1/2016 4
13 502-00038R 12/1/2018 1832
14 DP-023-0059 12/1/2018 2
15 DP-023-0059 4/1/2017 2
16 DP-023-0059 11/1/2018 3
17 DP-023-0059 5/1/2016 3
18 502-00038R 5/1/2016 197
19 502-00038R 3/1/2018 302
20 502-00038R 2/1/2018 275
21 502-00038R 3/1/2017 291
22 502-00038R 3/1/2016 359
23 004-0013 8/1/2016 9
24 DP-023-0059 6/1/2017 4
25 DP-023-0059 11/1/2016 4
26 DP-023-0059 7/1/2017 4
27 DP-023-0059 9/1/2016 4
28 DP-023-0059 10/1/2017 4
29 DP-023-0059 5/1/2018 4
30 DP-023-0059 8/1/2016 4
31 DP-023-0059 6/1/2016 4
32 DP-023-0059 3/1/2018 4
33 DP-023-0059 2/1/2016 4
34 502-00038R 4/1/2017 365
35 502-00038R 1/1/2017 297
36 502-00038R 6/1/2016 590
37 502-00038R 7/1/2017 380
38 502-00038R 7/1/2016 418
39 502-00038R 10/1/2017 438
40 502-00038R 4/1/2018 288
41 502-00038R 5/1/2017 369
42 502-00038R 4/1/2016 237
43 DP-023-0059 3/1/2016 6
44 DP-023-0059 8/1/2017 5
45 DP-023-0059 2/1/2018 5
46 DP-023-0059 9/1/2017 5
47 DP-023-0059 8/1/2018 5
48 DP-023-0059 4/1/2016 5
49 DP-023-0059 6/1/2018 7
50 DP-023-0059 1/1/2016 6
51 DP-023-0059 7/1/2018 6
52 DP-023-0059 4/1/2018 6
53 DP-023-0059 11/1/2017 6
54 DP-023-0059 7/1/2016 6
55 DP-023-0059 1/1/2017 6
56 DP-023-0059 12/1/2016 6
57 502-00038R 1/1/2018 1483
58 502-00038R 2/1/2016 306
59 502-00038R 9/1/2016 420
60 502-00038R 8/1/2016 534
61 DP-023-0059 2/1/2017 9
62 DP-023-0059 5/1/2017 8
63 DP-023-0059 10/1/2018 8
64 502-00038R 11/1/2017 492
65 502-00038R 8/1/2017 723
66 502-00038R 12/1/2016 445
67 502-00038R 2/1/2017 1544
68 DP-023-0059 9/1/2018 9
69 502-00038R 1/1/2016 619
70 502-00038R 6/1/2017 679
71 502-00038R 9/1/2017 829
72 502-00038R 10/1/2016 517
73 DP-023-0059 3/1/2017 8
74 DP-023-0059 10/1/2016 8
75 502-00038R 12/1/2017 313
76 502-00038R 11/1/2016 867
77 004-0013 11/1/2018 14
78 004-0013 12/1/2018 15
79 004-0013 2/1/2017 14
80 004-0013 1/1/2019 19
81 004-0013 11/1/2016 30
82 004-0013 2/1/2018 13
83 004-0013 3/1/2017 9
84 004-0013 5/1/2017 4
85 004-0013 8/1/2017 15
86 004-0013 7/1/2018 13
87 004-0013 9/1/2016 16
88 004-0013 2/1/2016 17
89 004-0013 10/1/2018 6
90 004-0013 6/1/2018 7
91 004-0013 1/1/2018 6
92 004-0013 4/1/2017 11
93 004-0013 10/1/2017 17
94 004-0013 10/1/2016 21
95 004-0013 5/1/2018 13
96 004-0013 1/1/2017 12
97 004-0013 4/1/2016 24
98 004-0013 6/1/2017 11
99 004-0013 11/1/2017 12
100 004-0013 4/1/2018 14
101 004-0013 3/1/2016 13
102 004-0013 12/1/2016 12
103 004-0013 6/1/2016 16
104 004-0013 1/1/2016 6
105 004-0013 12/1/2017 9
106 004-0013 8/1/2018 12
107 004-0013 9/1/2017 21
108 004-0013 9/1/2018 6
109 004-0013 5/1/2016 12


Current Output










share|improve this question




























    0















    I have a dataset with 3 different Item Numbers, with corresponding 36 months Quantity value. When I run the forecast output, it shows only the cumulative/only the first Item Numbers forecast. I want the output to show the forecast of each individual Item Number(That is Item1 - "004-0013" -> 6 months forecast, followed by Item2- "DP-023-0059"-> 6 months forecast and lastly Item3 -"502-00038R"-> 6 months forecast). Thanks in advance for any help.
    p.s: This is my first post, so if there is an error in the format of the post, please do let me know.



    library('ggplot2')
    library('forecast')
    library('tseries')
    a <- read.csv("high.csv", stringsAsFactors = F)
    a$Month <- as.Date(a$Month)

    Qty_ts = ts(a[,c('Qty')])

    a$Qty_ma12 = ma(a$Qty, order = 3)

    Qty_ma = ts(na.omit(a$Qty_ma), start = c(2016,1),end = c(2019),frequency =
    12)
    decomp = stl(Qty_ma, s.window = "periodic")
    deseasonal_Qty <- seasadj(decomp)
    plot(decomp)

    adf.test(Qty_ma, alternative = "stationary")

    Acf(Qty_ma, main="")
    Pacf(Qty_ma,main="")

    Qty_d1 = diff(deseasonal_Qty, differences =1)
    plot(Qty_d1)
    adf.test(Qty_d1, alternative = "stationary")

    Acf(Qty_d1, main ='ACF for differenced Series')
    Pacf(Qty_d1,main ='PACF for Differenced Series')

    auto.arima(deseasonal_Qty, seasonal = FALSE)

    fit<- auto.arima(deseasonal_Qty, seasonal =FALSE)
    tsdisplay(residuals(fit), lag.max=45, main='(0,1,1) Model Residuals')

    fit2 = arima(deseasonal_Qty, order =c(1,1,0))
    fit2
    tsdisplay(residuals(fit2), lag.max=15, main='Seasonal model Residuals')

    fcast<- forecast(fit2, h=6)
    plot(fcast)
    fcast


    Results:



     Item.Number Month Qty
    1 004-0013 7/1/2017 1
    2 DP-023-0059 12/1/2017 1
    3 DP-023-0059 1/1/2018 1
    4 502-00038R 11/1/2018 73
    5 502-00038R 1/1/2019 738
    6 502-00038R 6/1/2018 358
    7 502-00038R 8/1/2018 751
    8 502-00038R 5/1/2018 697
    9 502-00038R 9/1/2018 1400
    10 502-00038R 7/1/2018 210
    11 004-0013 3/1/2018 4
    12 004-0013 7/1/2016 4
    13 502-00038R 12/1/2018 1832
    14 DP-023-0059 12/1/2018 2
    15 DP-023-0059 4/1/2017 2
    16 DP-023-0059 11/1/2018 3
    17 DP-023-0059 5/1/2016 3
    18 502-00038R 5/1/2016 197
    19 502-00038R 3/1/2018 302
    20 502-00038R 2/1/2018 275
    21 502-00038R 3/1/2017 291
    22 502-00038R 3/1/2016 359
    23 004-0013 8/1/2016 9
    24 DP-023-0059 6/1/2017 4
    25 DP-023-0059 11/1/2016 4
    26 DP-023-0059 7/1/2017 4
    27 DP-023-0059 9/1/2016 4
    28 DP-023-0059 10/1/2017 4
    29 DP-023-0059 5/1/2018 4
    30 DP-023-0059 8/1/2016 4
    31 DP-023-0059 6/1/2016 4
    32 DP-023-0059 3/1/2018 4
    33 DP-023-0059 2/1/2016 4
    34 502-00038R 4/1/2017 365
    35 502-00038R 1/1/2017 297
    36 502-00038R 6/1/2016 590
    37 502-00038R 7/1/2017 380
    38 502-00038R 7/1/2016 418
    39 502-00038R 10/1/2017 438
    40 502-00038R 4/1/2018 288
    41 502-00038R 5/1/2017 369
    42 502-00038R 4/1/2016 237
    43 DP-023-0059 3/1/2016 6
    44 DP-023-0059 8/1/2017 5
    45 DP-023-0059 2/1/2018 5
    46 DP-023-0059 9/1/2017 5
    47 DP-023-0059 8/1/2018 5
    48 DP-023-0059 4/1/2016 5
    49 DP-023-0059 6/1/2018 7
    50 DP-023-0059 1/1/2016 6
    51 DP-023-0059 7/1/2018 6
    52 DP-023-0059 4/1/2018 6
    53 DP-023-0059 11/1/2017 6
    54 DP-023-0059 7/1/2016 6
    55 DP-023-0059 1/1/2017 6
    56 DP-023-0059 12/1/2016 6
    57 502-00038R 1/1/2018 1483
    58 502-00038R 2/1/2016 306
    59 502-00038R 9/1/2016 420
    60 502-00038R 8/1/2016 534
    61 DP-023-0059 2/1/2017 9
    62 DP-023-0059 5/1/2017 8
    63 DP-023-0059 10/1/2018 8
    64 502-00038R 11/1/2017 492
    65 502-00038R 8/1/2017 723
    66 502-00038R 12/1/2016 445
    67 502-00038R 2/1/2017 1544
    68 DP-023-0059 9/1/2018 9
    69 502-00038R 1/1/2016 619
    70 502-00038R 6/1/2017 679
    71 502-00038R 9/1/2017 829
    72 502-00038R 10/1/2016 517
    73 DP-023-0059 3/1/2017 8
    74 DP-023-0059 10/1/2016 8
    75 502-00038R 12/1/2017 313
    76 502-00038R 11/1/2016 867
    77 004-0013 11/1/2018 14
    78 004-0013 12/1/2018 15
    79 004-0013 2/1/2017 14
    80 004-0013 1/1/2019 19
    81 004-0013 11/1/2016 30
    82 004-0013 2/1/2018 13
    83 004-0013 3/1/2017 9
    84 004-0013 5/1/2017 4
    85 004-0013 8/1/2017 15
    86 004-0013 7/1/2018 13
    87 004-0013 9/1/2016 16
    88 004-0013 2/1/2016 17
    89 004-0013 10/1/2018 6
    90 004-0013 6/1/2018 7
    91 004-0013 1/1/2018 6
    92 004-0013 4/1/2017 11
    93 004-0013 10/1/2017 17
    94 004-0013 10/1/2016 21
    95 004-0013 5/1/2018 13
    96 004-0013 1/1/2017 12
    97 004-0013 4/1/2016 24
    98 004-0013 6/1/2017 11
    99 004-0013 11/1/2017 12
    100 004-0013 4/1/2018 14
    101 004-0013 3/1/2016 13
    102 004-0013 12/1/2016 12
    103 004-0013 6/1/2016 16
    104 004-0013 1/1/2016 6
    105 004-0013 12/1/2017 9
    106 004-0013 8/1/2018 12
    107 004-0013 9/1/2017 21
    108 004-0013 9/1/2018 6
    109 004-0013 5/1/2016 12


    Current Output










    share|improve this question


























      0












      0








      0








      I have a dataset with 3 different Item Numbers, with corresponding 36 months Quantity value. When I run the forecast output, it shows only the cumulative/only the first Item Numbers forecast. I want the output to show the forecast of each individual Item Number(That is Item1 - "004-0013" -> 6 months forecast, followed by Item2- "DP-023-0059"-> 6 months forecast and lastly Item3 -"502-00038R"-> 6 months forecast). Thanks in advance for any help.
      p.s: This is my first post, so if there is an error in the format of the post, please do let me know.



      library('ggplot2')
      library('forecast')
      library('tseries')
      a <- read.csv("high.csv", stringsAsFactors = F)
      a$Month <- as.Date(a$Month)

      Qty_ts = ts(a[,c('Qty')])

      a$Qty_ma12 = ma(a$Qty, order = 3)

      Qty_ma = ts(na.omit(a$Qty_ma), start = c(2016,1),end = c(2019),frequency =
      12)
      decomp = stl(Qty_ma, s.window = "periodic")
      deseasonal_Qty <- seasadj(decomp)
      plot(decomp)

      adf.test(Qty_ma, alternative = "stationary")

      Acf(Qty_ma, main="")
      Pacf(Qty_ma,main="")

      Qty_d1 = diff(deseasonal_Qty, differences =1)
      plot(Qty_d1)
      adf.test(Qty_d1, alternative = "stationary")

      Acf(Qty_d1, main ='ACF for differenced Series')
      Pacf(Qty_d1,main ='PACF for Differenced Series')

      auto.arima(deseasonal_Qty, seasonal = FALSE)

      fit<- auto.arima(deseasonal_Qty, seasonal =FALSE)
      tsdisplay(residuals(fit), lag.max=45, main='(0,1,1) Model Residuals')

      fit2 = arima(deseasonal_Qty, order =c(1,1,0))
      fit2
      tsdisplay(residuals(fit2), lag.max=15, main='Seasonal model Residuals')

      fcast<- forecast(fit2, h=6)
      plot(fcast)
      fcast


      Results:



       Item.Number Month Qty
      1 004-0013 7/1/2017 1
      2 DP-023-0059 12/1/2017 1
      3 DP-023-0059 1/1/2018 1
      4 502-00038R 11/1/2018 73
      5 502-00038R 1/1/2019 738
      6 502-00038R 6/1/2018 358
      7 502-00038R 8/1/2018 751
      8 502-00038R 5/1/2018 697
      9 502-00038R 9/1/2018 1400
      10 502-00038R 7/1/2018 210
      11 004-0013 3/1/2018 4
      12 004-0013 7/1/2016 4
      13 502-00038R 12/1/2018 1832
      14 DP-023-0059 12/1/2018 2
      15 DP-023-0059 4/1/2017 2
      16 DP-023-0059 11/1/2018 3
      17 DP-023-0059 5/1/2016 3
      18 502-00038R 5/1/2016 197
      19 502-00038R 3/1/2018 302
      20 502-00038R 2/1/2018 275
      21 502-00038R 3/1/2017 291
      22 502-00038R 3/1/2016 359
      23 004-0013 8/1/2016 9
      24 DP-023-0059 6/1/2017 4
      25 DP-023-0059 11/1/2016 4
      26 DP-023-0059 7/1/2017 4
      27 DP-023-0059 9/1/2016 4
      28 DP-023-0059 10/1/2017 4
      29 DP-023-0059 5/1/2018 4
      30 DP-023-0059 8/1/2016 4
      31 DP-023-0059 6/1/2016 4
      32 DP-023-0059 3/1/2018 4
      33 DP-023-0059 2/1/2016 4
      34 502-00038R 4/1/2017 365
      35 502-00038R 1/1/2017 297
      36 502-00038R 6/1/2016 590
      37 502-00038R 7/1/2017 380
      38 502-00038R 7/1/2016 418
      39 502-00038R 10/1/2017 438
      40 502-00038R 4/1/2018 288
      41 502-00038R 5/1/2017 369
      42 502-00038R 4/1/2016 237
      43 DP-023-0059 3/1/2016 6
      44 DP-023-0059 8/1/2017 5
      45 DP-023-0059 2/1/2018 5
      46 DP-023-0059 9/1/2017 5
      47 DP-023-0059 8/1/2018 5
      48 DP-023-0059 4/1/2016 5
      49 DP-023-0059 6/1/2018 7
      50 DP-023-0059 1/1/2016 6
      51 DP-023-0059 7/1/2018 6
      52 DP-023-0059 4/1/2018 6
      53 DP-023-0059 11/1/2017 6
      54 DP-023-0059 7/1/2016 6
      55 DP-023-0059 1/1/2017 6
      56 DP-023-0059 12/1/2016 6
      57 502-00038R 1/1/2018 1483
      58 502-00038R 2/1/2016 306
      59 502-00038R 9/1/2016 420
      60 502-00038R 8/1/2016 534
      61 DP-023-0059 2/1/2017 9
      62 DP-023-0059 5/1/2017 8
      63 DP-023-0059 10/1/2018 8
      64 502-00038R 11/1/2017 492
      65 502-00038R 8/1/2017 723
      66 502-00038R 12/1/2016 445
      67 502-00038R 2/1/2017 1544
      68 DP-023-0059 9/1/2018 9
      69 502-00038R 1/1/2016 619
      70 502-00038R 6/1/2017 679
      71 502-00038R 9/1/2017 829
      72 502-00038R 10/1/2016 517
      73 DP-023-0059 3/1/2017 8
      74 DP-023-0059 10/1/2016 8
      75 502-00038R 12/1/2017 313
      76 502-00038R 11/1/2016 867
      77 004-0013 11/1/2018 14
      78 004-0013 12/1/2018 15
      79 004-0013 2/1/2017 14
      80 004-0013 1/1/2019 19
      81 004-0013 11/1/2016 30
      82 004-0013 2/1/2018 13
      83 004-0013 3/1/2017 9
      84 004-0013 5/1/2017 4
      85 004-0013 8/1/2017 15
      86 004-0013 7/1/2018 13
      87 004-0013 9/1/2016 16
      88 004-0013 2/1/2016 17
      89 004-0013 10/1/2018 6
      90 004-0013 6/1/2018 7
      91 004-0013 1/1/2018 6
      92 004-0013 4/1/2017 11
      93 004-0013 10/1/2017 17
      94 004-0013 10/1/2016 21
      95 004-0013 5/1/2018 13
      96 004-0013 1/1/2017 12
      97 004-0013 4/1/2016 24
      98 004-0013 6/1/2017 11
      99 004-0013 11/1/2017 12
      100 004-0013 4/1/2018 14
      101 004-0013 3/1/2016 13
      102 004-0013 12/1/2016 12
      103 004-0013 6/1/2016 16
      104 004-0013 1/1/2016 6
      105 004-0013 12/1/2017 9
      106 004-0013 8/1/2018 12
      107 004-0013 9/1/2017 21
      108 004-0013 9/1/2018 6
      109 004-0013 5/1/2016 12


      Current Output










      share|improve this question
















      I have a dataset with 3 different Item Numbers, with corresponding 36 months Quantity value. When I run the forecast output, it shows only the cumulative/only the first Item Numbers forecast. I want the output to show the forecast of each individual Item Number(That is Item1 - "004-0013" -> 6 months forecast, followed by Item2- "DP-023-0059"-> 6 months forecast and lastly Item3 -"502-00038R"-> 6 months forecast). Thanks in advance for any help.
      p.s: This is my first post, so if there is an error in the format of the post, please do let me know.



      library('ggplot2')
      library('forecast')
      library('tseries')
      a <- read.csv("high.csv", stringsAsFactors = F)
      a$Month <- as.Date(a$Month)

      Qty_ts = ts(a[,c('Qty')])

      a$Qty_ma12 = ma(a$Qty, order = 3)

      Qty_ma = ts(na.omit(a$Qty_ma), start = c(2016,1),end = c(2019),frequency =
      12)
      decomp = stl(Qty_ma, s.window = "periodic")
      deseasonal_Qty <- seasadj(decomp)
      plot(decomp)

      adf.test(Qty_ma, alternative = "stationary")

      Acf(Qty_ma, main="")
      Pacf(Qty_ma,main="")

      Qty_d1 = diff(deseasonal_Qty, differences =1)
      plot(Qty_d1)
      adf.test(Qty_d1, alternative = "stationary")

      Acf(Qty_d1, main ='ACF for differenced Series')
      Pacf(Qty_d1,main ='PACF for Differenced Series')

      auto.arima(deseasonal_Qty, seasonal = FALSE)

      fit<- auto.arima(deseasonal_Qty, seasonal =FALSE)
      tsdisplay(residuals(fit), lag.max=45, main='(0,1,1) Model Residuals')

      fit2 = arima(deseasonal_Qty, order =c(1,1,0))
      fit2
      tsdisplay(residuals(fit2), lag.max=15, main='Seasonal model Residuals')

      fcast<- forecast(fit2, h=6)
      plot(fcast)
      fcast


      Results:



       Item.Number Month Qty
      1 004-0013 7/1/2017 1
      2 DP-023-0059 12/1/2017 1
      3 DP-023-0059 1/1/2018 1
      4 502-00038R 11/1/2018 73
      5 502-00038R 1/1/2019 738
      6 502-00038R 6/1/2018 358
      7 502-00038R 8/1/2018 751
      8 502-00038R 5/1/2018 697
      9 502-00038R 9/1/2018 1400
      10 502-00038R 7/1/2018 210
      11 004-0013 3/1/2018 4
      12 004-0013 7/1/2016 4
      13 502-00038R 12/1/2018 1832
      14 DP-023-0059 12/1/2018 2
      15 DP-023-0059 4/1/2017 2
      16 DP-023-0059 11/1/2018 3
      17 DP-023-0059 5/1/2016 3
      18 502-00038R 5/1/2016 197
      19 502-00038R 3/1/2018 302
      20 502-00038R 2/1/2018 275
      21 502-00038R 3/1/2017 291
      22 502-00038R 3/1/2016 359
      23 004-0013 8/1/2016 9
      24 DP-023-0059 6/1/2017 4
      25 DP-023-0059 11/1/2016 4
      26 DP-023-0059 7/1/2017 4
      27 DP-023-0059 9/1/2016 4
      28 DP-023-0059 10/1/2017 4
      29 DP-023-0059 5/1/2018 4
      30 DP-023-0059 8/1/2016 4
      31 DP-023-0059 6/1/2016 4
      32 DP-023-0059 3/1/2018 4
      33 DP-023-0059 2/1/2016 4
      34 502-00038R 4/1/2017 365
      35 502-00038R 1/1/2017 297
      36 502-00038R 6/1/2016 590
      37 502-00038R 7/1/2017 380
      38 502-00038R 7/1/2016 418
      39 502-00038R 10/1/2017 438
      40 502-00038R 4/1/2018 288
      41 502-00038R 5/1/2017 369
      42 502-00038R 4/1/2016 237
      43 DP-023-0059 3/1/2016 6
      44 DP-023-0059 8/1/2017 5
      45 DP-023-0059 2/1/2018 5
      46 DP-023-0059 9/1/2017 5
      47 DP-023-0059 8/1/2018 5
      48 DP-023-0059 4/1/2016 5
      49 DP-023-0059 6/1/2018 7
      50 DP-023-0059 1/1/2016 6
      51 DP-023-0059 7/1/2018 6
      52 DP-023-0059 4/1/2018 6
      53 DP-023-0059 11/1/2017 6
      54 DP-023-0059 7/1/2016 6
      55 DP-023-0059 1/1/2017 6
      56 DP-023-0059 12/1/2016 6
      57 502-00038R 1/1/2018 1483
      58 502-00038R 2/1/2016 306
      59 502-00038R 9/1/2016 420
      60 502-00038R 8/1/2016 534
      61 DP-023-0059 2/1/2017 9
      62 DP-023-0059 5/1/2017 8
      63 DP-023-0059 10/1/2018 8
      64 502-00038R 11/1/2017 492
      65 502-00038R 8/1/2017 723
      66 502-00038R 12/1/2016 445
      67 502-00038R 2/1/2017 1544
      68 DP-023-0059 9/1/2018 9
      69 502-00038R 1/1/2016 619
      70 502-00038R 6/1/2017 679
      71 502-00038R 9/1/2017 829
      72 502-00038R 10/1/2016 517
      73 DP-023-0059 3/1/2017 8
      74 DP-023-0059 10/1/2016 8
      75 502-00038R 12/1/2017 313
      76 502-00038R 11/1/2016 867
      77 004-0013 11/1/2018 14
      78 004-0013 12/1/2018 15
      79 004-0013 2/1/2017 14
      80 004-0013 1/1/2019 19
      81 004-0013 11/1/2016 30
      82 004-0013 2/1/2018 13
      83 004-0013 3/1/2017 9
      84 004-0013 5/1/2017 4
      85 004-0013 8/1/2017 15
      86 004-0013 7/1/2018 13
      87 004-0013 9/1/2016 16
      88 004-0013 2/1/2016 17
      89 004-0013 10/1/2018 6
      90 004-0013 6/1/2018 7
      91 004-0013 1/1/2018 6
      92 004-0013 4/1/2017 11
      93 004-0013 10/1/2017 17
      94 004-0013 10/1/2016 21
      95 004-0013 5/1/2018 13
      96 004-0013 1/1/2017 12
      97 004-0013 4/1/2016 24
      98 004-0013 6/1/2017 11
      99 004-0013 11/1/2017 12
      100 004-0013 4/1/2018 14
      101 004-0013 3/1/2016 13
      102 004-0013 12/1/2016 12
      103 004-0013 6/1/2016 16
      104 004-0013 1/1/2016 6
      105 004-0013 12/1/2017 9
      106 004-0013 8/1/2018 12
      107 004-0013 9/1/2017 21
      108 004-0013 9/1/2018 6
      109 004-0013 5/1/2016 12


      Current Output







      r dplyr forecasting arima forecast






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 7 at 20:35









      M-M

      7,01462046




      7,01462046










      asked Mar 7 at 20:30









      kk1791kk1791

      14




      14






















          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55052330%2fforecasting-output-for-all-individual-input-in-r%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55052330%2fforecasting-output-for-all-individual-input-in-r%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Identity Server 4 is not redirecting to Angular app after login2019 Community Moderator ElectionIdentity Server 4 and dockerIdentityserver implicit flow unauthorized_clientIdentityServer Hybrid Flow - Access Token is null after user successful loginIdentity Server to MVC client : Page Redirect After loginLogin with Steam OpenId(oidc-client-js)Identity Server 4+.NET Core 2.0 + IdentityIdentityServer4 post-login redirect not working in Edge browserCall to IdentityServer4 generates System.NullReferenceException: Object reference not set to an instance of an objectIdentityServer4 without HTTPS not workingHow to get Authorization code from identity server without login form

          2005 Ahvaz unrest Contents Background Causes Casualties Aftermath See also References Navigation menue"At Least 10 Are Killed by Bombs in Iran""Iran"Archived"Arab-Iranians in Iran to make April 15 'Day of Fury'"State of Mind, State of Order: Reactions to Ethnic Unrest in the Islamic Republic of Iran.10.1111/j.1754-9469.2008.00028.x"Iran hangs Arab separatists"Iran Overview from ArchivedConstitution of the Islamic Republic of Iran"Tehran puzzled by forged 'riots' letter""Iran and its minorities: Down in the second class""Iran: Handling Of Ahvaz Unrest Could End With Televised Confessions""Bombings Rock Iran Ahead of Election""Five die in Iran ethnic clashes""Iran: Need for restraint as anniversary of unrest in Khuzestan approaches"Archived"Iranian Sunni protesters killed in clashes with security forces"Archived

          Can't initialize raids on a new ASUS Prime B360M-A motherboard2019 Community Moderator ElectionSimilar to RAID config yet more like mirroring solution?Can't get motherboard serial numberWhy does the BIOS entry point start with a WBINVD instruction?UEFI performance Asus Maximus V Extreme