Energy principles in structural mechanics Contents General principles Elastic systems Linear elastic systems Applications Bibliography Navigation menu
Structural analysisCalculus of variations
stressesstrainsdeformationsdisplacementsexternal effectssolid mechanicspartial differential equations
Energy principles in structural mechanics express the relationships between stresses, strains or deformations, displacements, material properties, and external effects in the form of energy or work done by internal and external forces. Since energy is a scalar quantity, these relationships provide convenient and alternative means for formulating the governing equations of deformable bodies in solid mechanics. They can also be used for obtaining approximate solutions of fairly complex systems, bypassing the difficult task of solving the set of governing partial differential equations.
Contents
1 General principles
2 Elastic systems
3 Linear elastic systems
4 Applications
5 Bibliography
General principles
Virtual work principle- Principle of virtual displacements
- Principle of virtual forces
- Unit dummy force method
- Modified variational principles
Elastic systems
- Minimum total potential energy principle
- Principle of stationary total complementary potential energy
Castigliano's first theorem (for forces)
Linear elastic systems
Castigliano's second theorem (for displacements)- Betti's reciprocal theorem
- Müller-Breslau's principle
Applications
- Governing equations by variational principles
- Approximate solution methods
- Finite element method in structural mechanics
Bibliography
- Charlton, T.M.; Energy Principles in Theory of Structures, Oxford University Press, 1973. .mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
ISBN 0-19-714102-1 - Dym, C. L. and I. H. Shames; Solid Mechanics: A Variational Approach, McGraw-Hill, 1973.
- Hu, H. Variational Principles of Theory of Elasticity With Applications; Taylor & Francis, 1984.
ISBN 0-677-31330-6 - Langhaar, H. L.; Energy Methods in Applied Mechanics, Krieger, 1989.
- Moiseiwitsch, B. L.; Variational Principles, John Wiley and Sons, 1966.
ISBN 0-470-61280-0 - Mura, T.; Variational Methods in Mechanics, Oxford University Press, 1992.
ISBN 0-19-506830-0
Reddy, J.N.; Energy Principles and Variational Methods in Applied Mechanics, John Wiley, 2002.
ISBN 0-471-17985-X- Shames, I. H. and Dym, C. L.; Energy and Finite Element Methods in Structural Mechanics, Taylor & Francis, 1995,
ISBN 0-89116-942-3 - Tauchert, T.R.; Energy Principles in Structural Mechanics, McGraw-Hill, 1974.
ISBN 0-07-062925-0 - Washizu, K.; Variational Methods in Elasticity and Plasticity, Pergamon Pr, 1982.
ISBN 0-08-026723-8 - Wunderlich, W.; Mechanics of Structures: Variational and Computational Methods, CRC, 2002.
ISBN 0-8493-0700-7