How to implement K-fold in this recommendation system?2019 Community Moderator ElectionHow do recommendation systems work?How to evaluate a Content-based Recommender SystemHow to Implement A Recommendation System?Good resources on recommender systems?Implementing recommendation system for unsupervised learningRecommendation System based on tagsRecommendation system designHow to Implement Recommendation system with WekaKeras AttributeError: 'list' object has no attribute 'ndim'What loss function to use for an Seq2Seq NMT?
What are the rules for concealing thieves' tools (or items in general)?
How to determine the greatest d orbital splitting?
Output visual diagram of picture
Should I be concerned about student access to a test bank?
How do researchers send unsolicited emails asking for feedback on their works?
Is xar preinstalled on macOS?
Have any astronauts/cosmonauts died in space?
Isn't the word "experience" wrongly used in this context?
Do native speakers use "ultima" and "proxima" frequently in spoken English?
Hot air balloons as primitive bombers
Why didn’t Eve recognize the little cockroach as a living organism?
UK Tourist Visa- Enquiry
PTIJ: Why do we make a Lulav holder?
How to find the largest number(s) in a list of elements, possibly non-unique?
Imaginary part of expression too difficult to calculate
Exit shell with shortcut (not typing exit) that closes session properly
10 year ban after applying for a UK student visa
Why are there no stars visible in cislunar space?
Have the tides ever turned twice on any open problem?
Does convergence of polynomials imply that of its coefficients?
Do I need an EFI partition for each 18.04 ubuntu I have on my HD?
Why does Surtur say that Thor is Asgard's doom?
When did hardware antialiasing start being available?
is this saw blade faulty?
How to implement K-fold in this recommendation system?
2019 Community Moderator ElectionHow do recommendation systems work?How to evaluate a Content-based Recommender SystemHow to Implement A Recommendation System?Good resources on recommender systems?Implementing recommendation system for unsupervised learningRecommendation System based on tagsRecommendation system designHow to Implement Recommendation system with WekaKeras AttributeError: 'list' object has no attribute 'ndim'What loss function to use for an Seq2Seq NMT?
anyone knows how to implement k-fold in this algoritm, try some methods but didnt work, can anyone help me ?
from sklearn.model_selection import train_test_split
train, test = train_test_split(dataset, test_size=0.2)
n_users, n_movies = len(dataset.userId.unique()), len(dataset.movieId.unique())
n_latent_factors = 3
movie_input = keras.layers.Input(shape=[1],name='Item')
movie_embedding = keras.layers.Embedding(n_movies + 1, n_latent_factors, name='Movie-Embedding')(movie_input)
movie_vec = keras.layers.Conv1D(64,kernel_size=1)(movie_embedding)
movie_vec = keras.layers.MaxPooling1D(pool_size = (1))(movie_vec)
movie_vec = keras.layers.Flatten(name='FlattenMovies')(movie_vec)
user_input = keras.layers.Input(shape=[1],name='User')
user_embedding=(keras.layers.Embedding(n_users + 1, n_latent_factors,name='User-Embedding')(user_input))
user_vec = keras.layers.Conv1D(64,kernel_size=1)(user_embedding)
user_vec = keras.layers.MaxPooling1D(pool_size = (1))(user_vec)
user_vec = keras.layers.Flatten(name='FlattenUsers')(user_vec)
prod = keras.layers.dot([movie_vec, user_vec], axes=1,name='DotProduct')
model = keras.Model([user_input, movie_input], prod)
model.compile('adam', 'mean_squared_error')
history = model.fit([train.userId, train.movieId], train.rating, epochs=40)
keras recommendation-engine
add a comment |
anyone knows how to implement k-fold in this algoritm, try some methods but didnt work, can anyone help me ?
from sklearn.model_selection import train_test_split
train, test = train_test_split(dataset, test_size=0.2)
n_users, n_movies = len(dataset.userId.unique()), len(dataset.movieId.unique())
n_latent_factors = 3
movie_input = keras.layers.Input(shape=[1],name='Item')
movie_embedding = keras.layers.Embedding(n_movies + 1, n_latent_factors, name='Movie-Embedding')(movie_input)
movie_vec = keras.layers.Conv1D(64,kernel_size=1)(movie_embedding)
movie_vec = keras.layers.MaxPooling1D(pool_size = (1))(movie_vec)
movie_vec = keras.layers.Flatten(name='FlattenMovies')(movie_vec)
user_input = keras.layers.Input(shape=[1],name='User')
user_embedding=(keras.layers.Embedding(n_users + 1, n_latent_factors,name='User-Embedding')(user_input))
user_vec = keras.layers.Conv1D(64,kernel_size=1)(user_embedding)
user_vec = keras.layers.MaxPooling1D(pool_size = (1))(user_vec)
user_vec = keras.layers.Flatten(name='FlattenUsers')(user_vec)
prod = keras.layers.dot([movie_vec, user_vec], axes=1,name='DotProduct')
model = keras.Model([user_input, movie_input], prod)
model.compile('adam', 'mean_squared_error')
history = model.fit([train.userId, train.movieId], train.rating, epochs=40)
keras recommendation-engine
add a comment |
anyone knows how to implement k-fold in this algoritm, try some methods but didnt work, can anyone help me ?
from sklearn.model_selection import train_test_split
train, test = train_test_split(dataset, test_size=0.2)
n_users, n_movies = len(dataset.userId.unique()), len(dataset.movieId.unique())
n_latent_factors = 3
movie_input = keras.layers.Input(shape=[1],name='Item')
movie_embedding = keras.layers.Embedding(n_movies + 1, n_latent_factors, name='Movie-Embedding')(movie_input)
movie_vec = keras.layers.Conv1D(64,kernel_size=1)(movie_embedding)
movie_vec = keras.layers.MaxPooling1D(pool_size = (1))(movie_vec)
movie_vec = keras.layers.Flatten(name='FlattenMovies')(movie_vec)
user_input = keras.layers.Input(shape=[1],name='User')
user_embedding=(keras.layers.Embedding(n_users + 1, n_latent_factors,name='User-Embedding')(user_input))
user_vec = keras.layers.Conv1D(64,kernel_size=1)(user_embedding)
user_vec = keras.layers.MaxPooling1D(pool_size = (1))(user_vec)
user_vec = keras.layers.Flatten(name='FlattenUsers')(user_vec)
prod = keras.layers.dot([movie_vec, user_vec], axes=1,name='DotProduct')
model = keras.Model([user_input, movie_input], prod)
model.compile('adam', 'mean_squared_error')
history = model.fit([train.userId, train.movieId], train.rating, epochs=40)
keras recommendation-engine
anyone knows how to implement k-fold in this algoritm, try some methods but didnt work, can anyone help me ?
from sklearn.model_selection import train_test_split
train, test = train_test_split(dataset, test_size=0.2)
n_users, n_movies = len(dataset.userId.unique()), len(dataset.movieId.unique())
n_latent_factors = 3
movie_input = keras.layers.Input(shape=[1],name='Item')
movie_embedding = keras.layers.Embedding(n_movies + 1, n_latent_factors, name='Movie-Embedding')(movie_input)
movie_vec = keras.layers.Conv1D(64,kernel_size=1)(movie_embedding)
movie_vec = keras.layers.MaxPooling1D(pool_size = (1))(movie_vec)
movie_vec = keras.layers.Flatten(name='FlattenMovies')(movie_vec)
user_input = keras.layers.Input(shape=[1],name='User')
user_embedding=(keras.layers.Embedding(n_users + 1, n_latent_factors,name='User-Embedding')(user_input))
user_vec = keras.layers.Conv1D(64,kernel_size=1)(user_embedding)
user_vec = keras.layers.MaxPooling1D(pool_size = (1))(user_vec)
user_vec = keras.layers.Flatten(name='FlattenUsers')(user_vec)
prod = keras.layers.dot([movie_vec, user_vec], axes=1,name='DotProduct')
model = keras.Model([user_input, movie_input], prod)
model.compile('adam', 'mean_squared_error')
history = model.fit([train.userId, train.movieId], train.rating, epochs=40)
keras recommendation-engine
keras recommendation-engine
edited Mar 8 at 14:12
Ioannis Nasios
3,78931035
3,78931035
asked Mar 7 at 18:40
Gustavo Barreto ResendeGustavo Barreto Resende
11
11
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55050709%2fhow-to-implement-k-fold-in-this-recommendation-system%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55050709%2fhow-to-implement-k-fold-in-this-recommendation-system%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown