Spark Window function using more than one columnHow can a time function exist in functional programming?How to change column types in Spark SQL's DataFrame?How to sort by column in descending order in Spark SQL?Spark (Scala): Insert missing rows to complete sequence in a specific columnSpark DataFrame to DataSet with custom columnsSpark Dataframe join heap space issue and too many partitionsWhat is the best way to create a new Spark dataframe column based on an existing column that requires an external API call?Spark DataFrame filtering gives inconsistent outputCompilation error is showing while splitting 1 column into multiple columnSwap multiple value columns of dataframe in spark

Multi tool use
To string or not to string
"You are your self first supporter", a more proper way to say it
What do the dots in this tr command do: tr .............A-Z A-ZA-Z <<< "JVPQBOV" (with 13 dots)
Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?
What is the offset in a seaplane's hull?
Show that if two triangles built on parallel lines, with equal bases have the same perimeter only if they are congruent.
How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?
How to test if a transaction is standard without spending real money?
Python: next in for loop
Why Is Death Allowed In the Matrix?
How to say job offer in Mandarin/Cantonese?
How much RAM could one put in a typical 80386 setup?
Why are 150k or 200k jobs considered good when there are 300k+ births a month?
How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?
Can I make popcorn with any corn?
Writing rule stating superpower from different root cause is bad writing
What's the output of a record cartridge playing an out-of-speed record
Did Shadowfax go to Valinor?
Why doesn't H₄O²⁺ exist?
What are these boxed doors outside store fronts in New York?
Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)
Why do falling prices hurt debtors?
Is it legal for company to use my work email to pretend I still work there?
Why does Kotter return in Welcome Back Kotter?
Spark Window function using more than one column
How can a time function exist in functional programming?How to change column types in Spark SQL's DataFrame?How to sort by column in descending order in Spark SQL?Spark (Scala): Insert missing rows to complete sequence in a specific columnSpark DataFrame to DataSet with custom columnsSpark Dataframe join heap space issue and too many partitionsWhat is the best way to create a new Spark dataframe column based on an existing column that requires an external API call?Spark DataFrame filtering gives inconsistent outputCompilation error is showing while splitting 1 column into multiple columnSwap multiple value columns of dataframe in spark
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;
I have this dataframe that shows the send time and the open time for each user:
val df = Seq(("user1", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user1", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user1", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user1", "2018-04-05 18:00:00", "2018-04-05 18:50:00"),
("user2", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user2", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user2", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user2", "2018-04-05 17:30:00", "2018-04-05 17:40:00"),
("user2", "2018-04-05 18:00:00", null),
("user2", "2018-04-05 19:00:00", null)
).toDF("id", "sendTime", "openTime")
+-----+-------------------+-------------------+
| id| sendTime| openTime|
+-----+-------------------+-------------------+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00|
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00|
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00|
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00|
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00|
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00|
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00|
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00|
|user2|2018-04-05 18:00:00| null|
|user2|2018-04-05 19:00:00| null|
+-----+-------------------+-------------------+
Now I want to count the number of opens that have happened in the past two hours from each send time for each user. I used window function to partition by user, but I couldn't figure out how to compare values from the sendTime
column to the openTime
column. The result dataframe should look like this:
+-----+-------------------+-------------------+-----+
| id| sendTime| openTime|count|
+-----+-------------------+-------------------+-----+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00| 0|
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00| 1|
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00| 2|
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00| 2|
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00| 0|
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00| 1|
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00| 2|
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00| 2|
|user2|2018-04-05 18:00:00| null| 3|
|user2|2018-04-05 19:00:00| null| 2|
+-----+-------------------+-------------------+-----+
This is as far as I have got but doesn't give me what I need:
var df2 = df.withColumn("sendUnix", F.unix_timestamp($"sendTime")).withColumn("openUnix", F.unix_timestamp($"openTime"))
val w = Window.partitionBy($"id").orderBy($"sendUnix").rangeBetween(-2*60*60, 0)
df2 = df2.withColumn("count", F.count($"openUnix").over(w))
scala apache-spark apache-spark-sql
add a comment |
I have this dataframe that shows the send time and the open time for each user:
val df = Seq(("user1", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user1", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user1", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user1", "2018-04-05 18:00:00", "2018-04-05 18:50:00"),
("user2", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user2", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user2", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user2", "2018-04-05 17:30:00", "2018-04-05 17:40:00"),
("user2", "2018-04-05 18:00:00", null),
("user2", "2018-04-05 19:00:00", null)
).toDF("id", "sendTime", "openTime")
+-----+-------------------+-------------------+
| id| sendTime| openTime|
+-----+-------------------+-------------------+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00|
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00|
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00|
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00|
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00|
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00|
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00|
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00|
|user2|2018-04-05 18:00:00| null|
|user2|2018-04-05 19:00:00| null|
+-----+-------------------+-------------------+
Now I want to count the number of opens that have happened in the past two hours from each send time for each user. I used window function to partition by user, but I couldn't figure out how to compare values from the sendTime
column to the openTime
column. The result dataframe should look like this:
+-----+-------------------+-------------------+-----+
| id| sendTime| openTime|count|
+-----+-------------------+-------------------+-----+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00| 0|
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00| 1|
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00| 2|
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00| 2|
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00| 0|
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00| 1|
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00| 2|
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00| 2|
|user2|2018-04-05 18:00:00| null| 3|
|user2|2018-04-05 19:00:00| null| 2|
+-----+-------------------+-------------------+-----+
This is as far as I have got but doesn't give me what I need:
var df2 = df.withColumn("sendUnix", F.unix_timestamp($"sendTime")).withColumn("openUnix", F.unix_timestamp($"openTime"))
val w = Window.partitionBy($"id").orderBy($"sendUnix").rangeBetween(-2*60*60, 0)
df2 = df2.withColumn("count", F.count($"openUnix").over(w))
scala apache-spark apache-spark-sql
add a comment |
I have this dataframe that shows the send time and the open time for each user:
val df = Seq(("user1", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user1", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user1", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user1", "2018-04-05 18:00:00", "2018-04-05 18:50:00"),
("user2", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user2", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user2", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user2", "2018-04-05 17:30:00", "2018-04-05 17:40:00"),
("user2", "2018-04-05 18:00:00", null),
("user2", "2018-04-05 19:00:00", null)
).toDF("id", "sendTime", "openTime")
+-----+-------------------+-------------------+
| id| sendTime| openTime|
+-----+-------------------+-------------------+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00|
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00|
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00|
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00|
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00|
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00|
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00|
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00|
|user2|2018-04-05 18:00:00| null|
|user2|2018-04-05 19:00:00| null|
+-----+-------------------+-------------------+
Now I want to count the number of opens that have happened in the past two hours from each send time for each user. I used window function to partition by user, but I couldn't figure out how to compare values from the sendTime
column to the openTime
column. The result dataframe should look like this:
+-----+-------------------+-------------------+-----+
| id| sendTime| openTime|count|
+-----+-------------------+-------------------+-----+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00| 0|
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00| 1|
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00| 2|
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00| 2|
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00| 0|
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00| 1|
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00| 2|
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00| 2|
|user2|2018-04-05 18:00:00| null| 3|
|user2|2018-04-05 19:00:00| null| 2|
+-----+-------------------+-------------------+-----+
This is as far as I have got but doesn't give me what I need:
var df2 = df.withColumn("sendUnix", F.unix_timestamp($"sendTime")).withColumn("openUnix", F.unix_timestamp($"openTime"))
val w = Window.partitionBy($"id").orderBy($"sendUnix").rangeBetween(-2*60*60, 0)
df2 = df2.withColumn("count", F.count($"openUnix").over(w))
scala apache-spark apache-spark-sql
I have this dataframe that shows the send time and the open time for each user:
val df = Seq(("user1", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user1", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user1", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user1", "2018-04-05 18:00:00", "2018-04-05 18:50:00"),
("user2", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user2", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user2", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user2", "2018-04-05 17:30:00", "2018-04-05 17:40:00"),
("user2", "2018-04-05 18:00:00", null),
("user2", "2018-04-05 19:00:00", null)
).toDF("id", "sendTime", "openTime")
+-----+-------------------+-------------------+
| id| sendTime| openTime|
+-----+-------------------+-------------------+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00|
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00|
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00|
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00|
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00|
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00|
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00|
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00|
|user2|2018-04-05 18:00:00| null|
|user2|2018-04-05 19:00:00| null|
+-----+-------------------+-------------------+
Now I want to count the number of opens that have happened in the past two hours from each send time for each user. I used window function to partition by user, but I couldn't figure out how to compare values from the sendTime
column to the openTime
column. The result dataframe should look like this:
+-----+-------------------+-------------------+-----+
| id| sendTime| openTime|count|
+-----+-------------------+-------------------+-----+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00| 0|
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00| 1|
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00| 2|
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00| 2|
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00| 0|
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00| 1|
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00| 2|
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00| 2|
|user2|2018-04-05 18:00:00| null| 3|
|user2|2018-04-05 19:00:00| null| 2|
+-----+-------------------+-------------------+-----+
This is as far as I have got but doesn't give me what I need:
var df2 = df.withColumn("sendUnix", F.unix_timestamp($"sendTime")).withColumn("openUnix", F.unix_timestamp($"openTime"))
val w = Window.partitionBy($"id").orderBy($"sendUnix").rangeBetween(-2*60*60, 0)
df2 = df2.withColumn("count", F.count($"openUnix").over(w))
scala apache-spark apache-spark-sql
scala apache-spark apache-spark-sql
asked Mar 9 at 2:49
PooyaPooya
10617
10617
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
This seems quite difficult yo do with just using Window
functions because you cannot reference the upper limit of sendTime
when trying to derive whether the value from openTime
is within the last 2 hours of the upper limit sendTime
.
With spark 2.4 came higher order functions which you can read about here (https://docs.databricks.com/_static/notebooks/apache-spark-2.4-functions.html). Using these you could collect all the openTime
within a window using the collect_list
function and then using the higher order function filter
filter out the openTimes
outside the two hours prior to the sendTime
. Finally you can count the values remaining in the list to give you the count that you are after. Here is my code for doing this.
import org.apache.spark.sql.expressions.Window
val df = Seq(("user1", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user1", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user1", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user1", "2018-04-05 18:00:00", "2018-04-05 18:50:00"),
("user2", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user2", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user2", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user2", "2018-04-05 17:30:00", "2018-04-05 17:40:00"),
("user2", "2018-04-05 18:00:00", null),
("user2", "2018-04-05 19:00:00", null)
).toDF("id", "sendTime", "openTime")
var df2 = df.withColumn("sendUnix", unix_timestamp($"sendTime"))
.withColumn("openUnix", unix_timestamp($"openTime"))
val df3 = df2.withColumn("opened", collect_list($"openUnix").over(w))
df3.show(false)
+-----+-------------------+-------------------+----------+----------+------------------------------------+
|id |sendTime |openTime |sendUnix |openUnix |opened |
+-----+-------------------+-------------------+----------+----------+------------------------------------+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|[1522939800] |
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|[1522943400, 1522939800] |
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|[1522947000, 1522943400, 1522939800]|
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00|1522947600|1522950600|[1522950600, 1522947000, 1522943400]|
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|[1522939800] |
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|[1522943400, 1522939800] |
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|[1522947000, 1522943400, 1522939800]|
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00|1522945800|1522946400|[1522946400, 1522947000, 1522943400]|
|user2|2018-04-05 18:00:00|null |1522947600|null |[1522946400, 1522947000, 1522943400]|
|user2|2018-04-05 19:00:00|null |1522951200|null |[1522946400, 1522947000] |
+-----+-------------------+-------------------+----------+----------+------------------------------------+
val df4 = df3.selectExpr("id", "sendTime", "openTime", "sendUnix", "openUnix",
"size(filter(opened, x -> x < sendUnix AND x > sendUnix - 7200)) as count")
df4.show(false)
+-----+-------------------+-------------------+----------+----------+-----+
|id |sendTime |openTime |sendUnix |openUnix |count|
+-----+-------------------+-------------------+----------+----------+-----+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|0 |
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|1 |
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|2 |
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00|1522947600|1522950600|2 |
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|0 |
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|1 |
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|2 |
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00|1522945800|1522946400|1 |
|user2|2018-04-05 18:00:00|null |1522947600|null |3 |
|user2|2018-04-05 19:00:00|null |1522951200|null |2 |
+-----+-------------------+-------------------+----------+----------+-----+
Looks great! There is only a small problem with this that has caused the count on three rows from the bottom to be different from the expected response that I have posted. This is due torangeBetween(-2*60*60, 0)
in my code, that apparently you have also used. This leads to including only Sends that are only two hours before the current Send Time, whereas we need to look at all Send times and just look at the opens that are two hours before. If you remove therangeBetween(-2*60*60, 0)
I think we get the expected result.
– Pooya
Mar 11 at 18:08
add a comment |
Here you go. Code that solves the problem
val df1 = df.withColumn("sendTimeStamp", unix_timestamp(col("sendTime"))).withColumn("openTimeStamp", unix_timestamp(col("openTime")))
val w = Window.partitionBy('id).orderBy('sendTimeStamp).rangeBetween(-7200, 0)
var df2 = df1.withColumn("list", collect_list('openTimeStamp).over(w))
var df3 = df2.select('*, explode('list).as("prevTimeStamp"))
df3.groupBy('id, 'sendTime).agg(max('openTime).as("openTime"), sum(when(col("sendTimeStamp").minus(col("prevTimeStamp")).between(0, 7200), 1).otherwise(0)).as("count")).show
Please accept the answer if it solves.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55073539%2fspark-window-function-using-more-than-one-column%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
This seems quite difficult yo do with just using Window
functions because you cannot reference the upper limit of sendTime
when trying to derive whether the value from openTime
is within the last 2 hours of the upper limit sendTime
.
With spark 2.4 came higher order functions which you can read about here (https://docs.databricks.com/_static/notebooks/apache-spark-2.4-functions.html). Using these you could collect all the openTime
within a window using the collect_list
function and then using the higher order function filter
filter out the openTimes
outside the two hours prior to the sendTime
. Finally you can count the values remaining in the list to give you the count that you are after. Here is my code for doing this.
import org.apache.spark.sql.expressions.Window
val df = Seq(("user1", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user1", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user1", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user1", "2018-04-05 18:00:00", "2018-04-05 18:50:00"),
("user2", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user2", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user2", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user2", "2018-04-05 17:30:00", "2018-04-05 17:40:00"),
("user2", "2018-04-05 18:00:00", null),
("user2", "2018-04-05 19:00:00", null)
).toDF("id", "sendTime", "openTime")
var df2 = df.withColumn("sendUnix", unix_timestamp($"sendTime"))
.withColumn("openUnix", unix_timestamp($"openTime"))
val df3 = df2.withColumn("opened", collect_list($"openUnix").over(w))
df3.show(false)
+-----+-------------------+-------------------+----------+----------+------------------------------------+
|id |sendTime |openTime |sendUnix |openUnix |opened |
+-----+-------------------+-------------------+----------+----------+------------------------------------+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|[1522939800] |
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|[1522943400, 1522939800] |
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|[1522947000, 1522943400, 1522939800]|
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00|1522947600|1522950600|[1522950600, 1522947000, 1522943400]|
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|[1522939800] |
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|[1522943400, 1522939800] |
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|[1522947000, 1522943400, 1522939800]|
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00|1522945800|1522946400|[1522946400, 1522947000, 1522943400]|
|user2|2018-04-05 18:00:00|null |1522947600|null |[1522946400, 1522947000, 1522943400]|
|user2|2018-04-05 19:00:00|null |1522951200|null |[1522946400, 1522947000] |
+-----+-------------------+-------------------+----------+----------+------------------------------------+
val df4 = df3.selectExpr("id", "sendTime", "openTime", "sendUnix", "openUnix",
"size(filter(opened, x -> x < sendUnix AND x > sendUnix - 7200)) as count")
df4.show(false)
+-----+-------------------+-------------------+----------+----------+-----+
|id |sendTime |openTime |sendUnix |openUnix |count|
+-----+-------------------+-------------------+----------+----------+-----+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|0 |
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|1 |
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|2 |
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00|1522947600|1522950600|2 |
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|0 |
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|1 |
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|2 |
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00|1522945800|1522946400|1 |
|user2|2018-04-05 18:00:00|null |1522947600|null |3 |
|user2|2018-04-05 19:00:00|null |1522951200|null |2 |
+-----+-------------------+-------------------+----------+----------+-----+
Looks great! There is only a small problem with this that has caused the count on three rows from the bottom to be different from the expected response that I have posted. This is due torangeBetween(-2*60*60, 0)
in my code, that apparently you have also used. This leads to including only Sends that are only two hours before the current Send Time, whereas we need to look at all Send times and just look at the opens that are two hours before. If you remove therangeBetween(-2*60*60, 0)
I think we get the expected result.
– Pooya
Mar 11 at 18:08
add a comment |
This seems quite difficult yo do with just using Window
functions because you cannot reference the upper limit of sendTime
when trying to derive whether the value from openTime
is within the last 2 hours of the upper limit sendTime
.
With spark 2.4 came higher order functions which you can read about here (https://docs.databricks.com/_static/notebooks/apache-spark-2.4-functions.html). Using these you could collect all the openTime
within a window using the collect_list
function and then using the higher order function filter
filter out the openTimes
outside the two hours prior to the sendTime
. Finally you can count the values remaining in the list to give you the count that you are after. Here is my code for doing this.
import org.apache.spark.sql.expressions.Window
val df = Seq(("user1", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user1", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user1", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user1", "2018-04-05 18:00:00", "2018-04-05 18:50:00"),
("user2", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user2", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user2", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user2", "2018-04-05 17:30:00", "2018-04-05 17:40:00"),
("user2", "2018-04-05 18:00:00", null),
("user2", "2018-04-05 19:00:00", null)
).toDF("id", "sendTime", "openTime")
var df2 = df.withColumn("sendUnix", unix_timestamp($"sendTime"))
.withColumn("openUnix", unix_timestamp($"openTime"))
val df3 = df2.withColumn("opened", collect_list($"openUnix").over(w))
df3.show(false)
+-----+-------------------+-------------------+----------+----------+------------------------------------+
|id |sendTime |openTime |sendUnix |openUnix |opened |
+-----+-------------------+-------------------+----------+----------+------------------------------------+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|[1522939800] |
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|[1522943400, 1522939800] |
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|[1522947000, 1522943400, 1522939800]|
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00|1522947600|1522950600|[1522950600, 1522947000, 1522943400]|
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|[1522939800] |
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|[1522943400, 1522939800] |
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|[1522947000, 1522943400, 1522939800]|
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00|1522945800|1522946400|[1522946400, 1522947000, 1522943400]|
|user2|2018-04-05 18:00:00|null |1522947600|null |[1522946400, 1522947000, 1522943400]|
|user2|2018-04-05 19:00:00|null |1522951200|null |[1522946400, 1522947000] |
+-----+-------------------+-------------------+----------+----------+------------------------------------+
val df4 = df3.selectExpr("id", "sendTime", "openTime", "sendUnix", "openUnix",
"size(filter(opened, x -> x < sendUnix AND x > sendUnix - 7200)) as count")
df4.show(false)
+-----+-------------------+-------------------+----------+----------+-----+
|id |sendTime |openTime |sendUnix |openUnix |count|
+-----+-------------------+-------------------+----------+----------+-----+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|0 |
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|1 |
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|2 |
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00|1522947600|1522950600|2 |
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|0 |
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|1 |
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|2 |
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00|1522945800|1522946400|1 |
|user2|2018-04-05 18:00:00|null |1522947600|null |3 |
|user2|2018-04-05 19:00:00|null |1522951200|null |2 |
+-----+-------------------+-------------------+----------+----------+-----+
Looks great! There is only a small problem with this that has caused the count on three rows from the bottom to be different from the expected response that I have posted. This is due torangeBetween(-2*60*60, 0)
in my code, that apparently you have also used. This leads to including only Sends that are only two hours before the current Send Time, whereas we need to look at all Send times and just look at the opens that are two hours before. If you remove therangeBetween(-2*60*60, 0)
I think we get the expected result.
– Pooya
Mar 11 at 18:08
add a comment |
This seems quite difficult yo do with just using Window
functions because you cannot reference the upper limit of sendTime
when trying to derive whether the value from openTime
is within the last 2 hours of the upper limit sendTime
.
With spark 2.4 came higher order functions which you can read about here (https://docs.databricks.com/_static/notebooks/apache-spark-2.4-functions.html). Using these you could collect all the openTime
within a window using the collect_list
function and then using the higher order function filter
filter out the openTimes
outside the two hours prior to the sendTime
. Finally you can count the values remaining in the list to give you the count that you are after. Here is my code for doing this.
import org.apache.spark.sql.expressions.Window
val df = Seq(("user1", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user1", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user1", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user1", "2018-04-05 18:00:00", "2018-04-05 18:50:00"),
("user2", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user2", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user2", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user2", "2018-04-05 17:30:00", "2018-04-05 17:40:00"),
("user2", "2018-04-05 18:00:00", null),
("user2", "2018-04-05 19:00:00", null)
).toDF("id", "sendTime", "openTime")
var df2 = df.withColumn("sendUnix", unix_timestamp($"sendTime"))
.withColumn("openUnix", unix_timestamp($"openTime"))
val df3 = df2.withColumn("opened", collect_list($"openUnix").over(w))
df3.show(false)
+-----+-------------------+-------------------+----------+----------+------------------------------------+
|id |sendTime |openTime |sendUnix |openUnix |opened |
+-----+-------------------+-------------------+----------+----------+------------------------------------+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|[1522939800] |
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|[1522943400, 1522939800] |
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|[1522947000, 1522943400, 1522939800]|
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00|1522947600|1522950600|[1522950600, 1522947000, 1522943400]|
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|[1522939800] |
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|[1522943400, 1522939800] |
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|[1522947000, 1522943400, 1522939800]|
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00|1522945800|1522946400|[1522946400, 1522947000, 1522943400]|
|user2|2018-04-05 18:00:00|null |1522947600|null |[1522946400, 1522947000, 1522943400]|
|user2|2018-04-05 19:00:00|null |1522951200|null |[1522946400, 1522947000] |
+-----+-------------------+-------------------+----------+----------+------------------------------------+
val df4 = df3.selectExpr("id", "sendTime", "openTime", "sendUnix", "openUnix",
"size(filter(opened, x -> x < sendUnix AND x > sendUnix - 7200)) as count")
df4.show(false)
+-----+-------------------+-------------------+----------+----------+-----+
|id |sendTime |openTime |sendUnix |openUnix |count|
+-----+-------------------+-------------------+----------+----------+-----+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|0 |
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|1 |
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|2 |
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00|1522947600|1522950600|2 |
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|0 |
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|1 |
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|2 |
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00|1522945800|1522946400|1 |
|user2|2018-04-05 18:00:00|null |1522947600|null |3 |
|user2|2018-04-05 19:00:00|null |1522951200|null |2 |
+-----+-------------------+-------------------+----------+----------+-----+
This seems quite difficult yo do with just using Window
functions because you cannot reference the upper limit of sendTime
when trying to derive whether the value from openTime
is within the last 2 hours of the upper limit sendTime
.
With spark 2.4 came higher order functions which you can read about here (https://docs.databricks.com/_static/notebooks/apache-spark-2.4-functions.html). Using these you could collect all the openTime
within a window using the collect_list
function and then using the higher order function filter
filter out the openTimes
outside the two hours prior to the sendTime
. Finally you can count the values remaining in the list to give you the count that you are after. Here is my code for doing this.
import org.apache.spark.sql.expressions.Window
val df = Seq(("user1", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user1", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user1", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user1", "2018-04-05 18:00:00", "2018-04-05 18:50:00"),
("user2", "2018-04-05 15:00:00", "2018-04-05 15:50:00"),
("user2", "2018-04-05 16:00:00", "2018-04-05 16:50:00"),
("user2", "2018-04-05 17:00:00", "2018-04-05 17:50:00"),
("user2", "2018-04-05 17:30:00", "2018-04-05 17:40:00"),
("user2", "2018-04-05 18:00:00", null),
("user2", "2018-04-05 19:00:00", null)
).toDF("id", "sendTime", "openTime")
var df2 = df.withColumn("sendUnix", unix_timestamp($"sendTime"))
.withColumn("openUnix", unix_timestamp($"openTime"))
val df3 = df2.withColumn("opened", collect_list($"openUnix").over(w))
df3.show(false)
+-----+-------------------+-------------------+----------+----------+------------------------------------+
|id |sendTime |openTime |sendUnix |openUnix |opened |
+-----+-------------------+-------------------+----------+----------+------------------------------------+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|[1522939800] |
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|[1522943400, 1522939800] |
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|[1522947000, 1522943400, 1522939800]|
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00|1522947600|1522950600|[1522950600, 1522947000, 1522943400]|
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|[1522939800] |
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|[1522943400, 1522939800] |
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|[1522947000, 1522943400, 1522939800]|
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00|1522945800|1522946400|[1522946400, 1522947000, 1522943400]|
|user2|2018-04-05 18:00:00|null |1522947600|null |[1522946400, 1522947000, 1522943400]|
|user2|2018-04-05 19:00:00|null |1522951200|null |[1522946400, 1522947000] |
+-----+-------------------+-------------------+----------+----------+------------------------------------+
val df4 = df3.selectExpr("id", "sendTime", "openTime", "sendUnix", "openUnix",
"size(filter(opened, x -> x < sendUnix AND x > sendUnix - 7200)) as count")
df4.show(false)
+-----+-------------------+-------------------+----------+----------+-----+
|id |sendTime |openTime |sendUnix |openUnix |count|
+-----+-------------------+-------------------+----------+----------+-----+
|user1|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|0 |
|user1|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|1 |
|user1|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|2 |
|user1|2018-04-05 18:00:00|2018-04-05 18:50:00|1522947600|1522950600|2 |
|user2|2018-04-05 15:00:00|2018-04-05 15:50:00|1522936800|1522939800|0 |
|user2|2018-04-05 16:00:00|2018-04-05 16:50:00|1522940400|1522943400|1 |
|user2|2018-04-05 17:00:00|2018-04-05 17:50:00|1522944000|1522947000|2 |
|user2|2018-04-05 17:30:00|2018-04-05 17:40:00|1522945800|1522946400|1 |
|user2|2018-04-05 18:00:00|null |1522947600|null |3 |
|user2|2018-04-05 19:00:00|null |1522951200|null |2 |
+-----+-------------------+-------------------+----------+----------+-----+
answered Mar 9 at 17:05
randal25randal25
29924
29924
Looks great! There is only a small problem with this that has caused the count on three rows from the bottom to be different from the expected response that I have posted. This is due torangeBetween(-2*60*60, 0)
in my code, that apparently you have also used. This leads to including only Sends that are only two hours before the current Send Time, whereas we need to look at all Send times and just look at the opens that are two hours before. If you remove therangeBetween(-2*60*60, 0)
I think we get the expected result.
– Pooya
Mar 11 at 18:08
add a comment |
Looks great! There is only a small problem with this that has caused the count on three rows from the bottom to be different from the expected response that I have posted. This is due torangeBetween(-2*60*60, 0)
in my code, that apparently you have also used. This leads to including only Sends that are only two hours before the current Send Time, whereas we need to look at all Send times and just look at the opens that are two hours before. If you remove therangeBetween(-2*60*60, 0)
I think we get the expected result.
– Pooya
Mar 11 at 18:08
Looks great! There is only a small problem with this that has caused the count on three rows from the bottom to be different from the expected response that I have posted. This is due to
rangeBetween(-2*60*60, 0)
in my code, that apparently you have also used. This leads to including only Sends that are only two hours before the current Send Time, whereas we need to look at all Send times and just look at the opens that are two hours before. If you remove the rangeBetween(-2*60*60, 0)
I think we get the expected result.– Pooya
Mar 11 at 18:08
Looks great! There is only a small problem with this that has caused the count on three rows from the bottom to be different from the expected response that I have posted. This is due to
rangeBetween(-2*60*60, 0)
in my code, that apparently you have also used. This leads to including only Sends that are only two hours before the current Send Time, whereas we need to look at all Send times and just look at the opens that are two hours before. If you remove the rangeBetween(-2*60*60, 0)
I think we get the expected result.– Pooya
Mar 11 at 18:08
add a comment |
Here you go. Code that solves the problem
val df1 = df.withColumn("sendTimeStamp", unix_timestamp(col("sendTime"))).withColumn("openTimeStamp", unix_timestamp(col("openTime")))
val w = Window.partitionBy('id).orderBy('sendTimeStamp).rangeBetween(-7200, 0)
var df2 = df1.withColumn("list", collect_list('openTimeStamp).over(w))
var df3 = df2.select('*, explode('list).as("prevTimeStamp"))
df3.groupBy('id, 'sendTime).agg(max('openTime).as("openTime"), sum(when(col("sendTimeStamp").minus(col("prevTimeStamp")).between(0, 7200), 1).otherwise(0)).as("count")).show
Please accept the answer if it solves.
add a comment |
Here you go. Code that solves the problem
val df1 = df.withColumn("sendTimeStamp", unix_timestamp(col("sendTime"))).withColumn("openTimeStamp", unix_timestamp(col("openTime")))
val w = Window.partitionBy('id).orderBy('sendTimeStamp).rangeBetween(-7200, 0)
var df2 = df1.withColumn("list", collect_list('openTimeStamp).over(w))
var df3 = df2.select('*, explode('list).as("prevTimeStamp"))
df3.groupBy('id, 'sendTime).agg(max('openTime).as("openTime"), sum(when(col("sendTimeStamp").minus(col("prevTimeStamp")).between(0, 7200), 1).otherwise(0)).as("count")).show
Please accept the answer if it solves.
add a comment |
Here you go. Code that solves the problem
val df1 = df.withColumn("sendTimeStamp", unix_timestamp(col("sendTime"))).withColumn("openTimeStamp", unix_timestamp(col("openTime")))
val w = Window.partitionBy('id).orderBy('sendTimeStamp).rangeBetween(-7200, 0)
var df2 = df1.withColumn("list", collect_list('openTimeStamp).over(w))
var df3 = df2.select('*, explode('list).as("prevTimeStamp"))
df3.groupBy('id, 'sendTime).agg(max('openTime).as("openTime"), sum(when(col("sendTimeStamp").minus(col("prevTimeStamp")).between(0, 7200), 1).otherwise(0)).as("count")).show
Please accept the answer if it solves.
Here you go. Code that solves the problem
val df1 = df.withColumn("sendTimeStamp", unix_timestamp(col("sendTime"))).withColumn("openTimeStamp", unix_timestamp(col("openTime")))
val w = Window.partitionBy('id).orderBy('sendTimeStamp).rangeBetween(-7200, 0)
var df2 = df1.withColumn("list", collect_list('openTimeStamp).over(w))
var df3 = df2.select('*, explode('list).as("prevTimeStamp"))
df3.groupBy('id, 'sendTime).agg(max('openTime).as("openTime"), sum(when(col("sendTimeStamp").minus(col("prevTimeStamp")).between(0, 7200), 1).otherwise(0)).as("count")).show
Please accept the answer if it solves.
edited Mar 10 at 7:45
answered Mar 10 at 7:39
deodeo
50638
50638
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55073539%2fspark-window-function-using-more-than-one-column%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
5pT0,Dt