Make a feature the first column in data frameMove a column convenientlyDrop factor levels in a subsetted data frameHow to sort a dataframe by multiple column(s)?How to join (merge) data frames (inner, outer, left, right)Convert a list of data frames into one data frameR - list to data frameDrop data frame columns by nameHow to make a great R reproducible exampleChanging column names of a data frameExtracting specific columns from a data frameHow can we make xkcd style graphs?

Knowledge-based authentication using Domain-driven Design in C#

Should I tell management that I intend to leave due to bad software development practices?

How to coordinate airplane tickets?

Why was Sir Cadogan fired?

In Bayesian inference, why are some terms dropped from the posterior predictive?

How do conventional missiles fly?

Does Dispel Magic work on Tiny Hut?

Do creatures with a listed speed of "0 ft., fly 30 ft. (hover)" ever touch the ground?

How dangerous is XSS

Is it "common practice in Fourier transform spectroscopy to multiply the measured interferogram by an apodizing function"? If so, why?

Is it possible to map the firing of neurons in the human brain so as to stimulate artificial memories in someone else?

Finding the reason behind the value of the integral.

Is this draw by repetition?

Theorists sure want true answers to this!

What historical events would have to change in order to make 19th century "steampunk" technology possible?

Could the museum Saturn V's be refitted for one more flight?

How could indestructible materials be used in power generation?

Is it a bad idea to plug the other end of ESD strap to wall ground?

How to find if SQL server backup is encrypted with TDE without restoring the backup

Finitely generated matrix groups whose eigenvalues are all algebraic

Does the Idaho Potato Commission associate potato skins with healthy eating?

How badly should I try to prevent a user from XSSing themselves?

How can a day be of 24 hours?

How do I exit BASH while loop using modulus operator?



Make a feature the first column in data frame


Move a column convenientlyDrop factor levels in a subsetted data frameHow to sort a dataframe by multiple column(s)?How to join (merge) data frames (inner, outer, left, right)Convert a list of data frames into one data frameR - list to data frameDrop data frame columns by nameHow to make a great R reproducible exampleChanging column names of a data frameExtracting specific columns from a data frameHow can we make xkcd style graphs?













0















I have a data frame, say mtcars:



> glimpse(mtcars)
Observations: 32
Variables: 11
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4, 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, …
$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8, 4
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 167.6, 167.6, 275.8, 275.8, 275.8, 472.0, 460.0, 440.0, 78.7, 75.7, 71.1, 120.1, 318.0,…
$ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245, 175, 66, 91, 113, 264, 175, 335, 109
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.07, 3.07, 2.93, 3.00, 3.23, 4.08, 4.93, 4.22, 3.70, 2.76, 3.15, 3.73, 3.08, …
$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.440, 3.440, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 2.200, 1.615, 1.835, 2.465, 3.5…
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18.30, 18.90, 17.40, 17.60, 18.00, 17.98, 17.82, 17.42, 19.47, 18.52, 19.90, 20.01, 16.…
$ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1
$ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4
$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 6, 8, 2


Suppose I want to reorder the features so that hp is the first column to appear in the data frame as opposed to mpg.



I know that I could use dplyr like so:



> glimpse(mtcars %>% select_at(vars(hp, mpg:disp, drat:carb)))
Observations: 32
Variables: 11
$ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245, 175, 66, 91, 113, 264, 175, 335, 109
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4, 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, …
$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8, 4
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 167.6, 167.6, 275.8, 275.8, 275.8, 472.0, 460.0, 440.0, 78.7, 75.7, 71.1, 120.1, 318.0,…
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.07, 3.07, 2.93, 3.00, 3.23, 4.08, 4.93, 4.22, 3.70, 2.76, 3.15, 3.73, 3.08, …
$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.440, 3.440, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 2.200, 1.615, 1.835, 2.465, 3.5…
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18.30, 18.90, 17.40, 17.60, 18.00, 17.98, 17.82, 17.42, 19.47, 18.52, 19.90, 20.01, 16.…
$ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1
$ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4
$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 6, 8, 2


Is there a shorter, more elegant way of doing this?



(tidyverse or base r solutions particularly welcome)










share|improve this question

















  • 1





    mtcars %>% select(hp, everything())

    – camille
    Mar 8 at 20:49






  • 1





    You generally only need select_at for helper functions, like starts_with. For simple column selection and bare column names, just use select

    – camille
    Mar 8 at 20:50











  • Tyank you @camille. I never knew about everything(). I'll accept as answer if you want some SO karma brownie points?

    – Doug Fir
    Mar 8 at 20:51











  • Related Move a column conveniently

    – markus
    Mar 8 at 20:59















0















I have a data frame, say mtcars:



> glimpse(mtcars)
Observations: 32
Variables: 11
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4, 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, …
$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8, 4
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 167.6, 167.6, 275.8, 275.8, 275.8, 472.0, 460.0, 440.0, 78.7, 75.7, 71.1, 120.1, 318.0,…
$ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245, 175, 66, 91, 113, 264, 175, 335, 109
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.07, 3.07, 2.93, 3.00, 3.23, 4.08, 4.93, 4.22, 3.70, 2.76, 3.15, 3.73, 3.08, …
$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.440, 3.440, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 2.200, 1.615, 1.835, 2.465, 3.5…
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18.30, 18.90, 17.40, 17.60, 18.00, 17.98, 17.82, 17.42, 19.47, 18.52, 19.90, 20.01, 16.…
$ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1
$ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4
$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 6, 8, 2


Suppose I want to reorder the features so that hp is the first column to appear in the data frame as opposed to mpg.



I know that I could use dplyr like so:



> glimpse(mtcars %>% select_at(vars(hp, mpg:disp, drat:carb)))
Observations: 32
Variables: 11
$ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245, 175, 66, 91, 113, 264, 175, 335, 109
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4, 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, …
$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8, 4
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 167.6, 167.6, 275.8, 275.8, 275.8, 472.0, 460.0, 440.0, 78.7, 75.7, 71.1, 120.1, 318.0,…
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.07, 3.07, 2.93, 3.00, 3.23, 4.08, 4.93, 4.22, 3.70, 2.76, 3.15, 3.73, 3.08, …
$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.440, 3.440, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 2.200, 1.615, 1.835, 2.465, 3.5…
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18.30, 18.90, 17.40, 17.60, 18.00, 17.98, 17.82, 17.42, 19.47, 18.52, 19.90, 20.01, 16.…
$ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1
$ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4
$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 6, 8, 2


Is there a shorter, more elegant way of doing this?



(tidyverse or base r solutions particularly welcome)










share|improve this question

















  • 1





    mtcars %>% select(hp, everything())

    – camille
    Mar 8 at 20:49






  • 1





    You generally only need select_at for helper functions, like starts_with. For simple column selection and bare column names, just use select

    – camille
    Mar 8 at 20:50











  • Tyank you @camille. I never knew about everything(). I'll accept as answer if you want some SO karma brownie points?

    – Doug Fir
    Mar 8 at 20:51











  • Related Move a column conveniently

    – markus
    Mar 8 at 20:59













0












0








0








I have a data frame, say mtcars:



> glimpse(mtcars)
Observations: 32
Variables: 11
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4, 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, …
$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8, 4
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 167.6, 167.6, 275.8, 275.8, 275.8, 472.0, 460.0, 440.0, 78.7, 75.7, 71.1, 120.1, 318.0,…
$ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245, 175, 66, 91, 113, 264, 175, 335, 109
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.07, 3.07, 2.93, 3.00, 3.23, 4.08, 4.93, 4.22, 3.70, 2.76, 3.15, 3.73, 3.08, …
$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.440, 3.440, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 2.200, 1.615, 1.835, 2.465, 3.5…
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18.30, 18.90, 17.40, 17.60, 18.00, 17.98, 17.82, 17.42, 19.47, 18.52, 19.90, 20.01, 16.…
$ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1
$ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4
$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 6, 8, 2


Suppose I want to reorder the features so that hp is the first column to appear in the data frame as opposed to mpg.



I know that I could use dplyr like so:



> glimpse(mtcars %>% select_at(vars(hp, mpg:disp, drat:carb)))
Observations: 32
Variables: 11
$ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245, 175, 66, 91, 113, 264, 175, 335, 109
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4, 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, …
$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8, 4
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 167.6, 167.6, 275.8, 275.8, 275.8, 472.0, 460.0, 440.0, 78.7, 75.7, 71.1, 120.1, 318.0,…
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.07, 3.07, 2.93, 3.00, 3.23, 4.08, 4.93, 4.22, 3.70, 2.76, 3.15, 3.73, 3.08, …
$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.440, 3.440, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 2.200, 1.615, 1.835, 2.465, 3.5…
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18.30, 18.90, 17.40, 17.60, 18.00, 17.98, 17.82, 17.42, 19.47, 18.52, 19.90, 20.01, 16.…
$ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1
$ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4
$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 6, 8, 2


Is there a shorter, more elegant way of doing this?



(tidyverse or base r solutions particularly welcome)










share|improve this question














I have a data frame, say mtcars:



> glimpse(mtcars)
Observations: 32
Variables: 11
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4, 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, …
$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8, 4
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 167.6, 167.6, 275.8, 275.8, 275.8, 472.0, 460.0, 440.0, 78.7, 75.7, 71.1, 120.1, 318.0,…
$ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245, 175, 66, 91, 113, 264, 175, 335, 109
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.07, 3.07, 2.93, 3.00, 3.23, 4.08, 4.93, 4.22, 3.70, 2.76, 3.15, 3.73, 3.08, …
$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.440, 3.440, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 2.200, 1.615, 1.835, 2.465, 3.5…
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18.30, 18.90, 17.40, 17.60, 18.00, 17.98, 17.82, 17.42, 19.47, 18.52, 19.90, 20.01, 16.…
$ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1
$ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4
$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 6, 8, 2


Suppose I want to reorder the features so that hp is the first column to appear in the data frame as opposed to mpg.



I know that I could use dplyr like so:



> glimpse(mtcars %>% select_at(vars(hp, mpg:disp, drat:carb)))
Observations: 32
Variables: 11
$ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245, 175, 66, 91, 113, 264, 175, 335, 109
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4, 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, …
$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8, 4
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 167.6, 167.6, 275.8, 275.8, 275.8, 472.0, 460.0, 440.0, 78.7, 75.7, 71.1, 120.1, 318.0,…
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.07, 3.07, 2.93, 3.00, 3.23, 4.08, 4.93, 4.22, 3.70, 2.76, 3.15, 3.73, 3.08, …
$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.440, 3.440, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 2.200, 1.615, 1.835, 2.465, 3.5…
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18.30, 18.90, 17.40, 17.60, 18.00, 17.98, 17.82, 17.42, 19.47, 18.52, 19.90, 20.01, 16.…
$ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1
$ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4
$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 6, 8, 2


Is there a shorter, more elegant way of doing this?



(tidyverse or base r solutions particularly welcome)







r dplyr






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Mar 8 at 20:46









Doug FirDoug Fir

5,6062887159




5,6062887159







  • 1





    mtcars %>% select(hp, everything())

    – camille
    Mar 8 at 20:49






  • 1





    You generally only need select_at for helper functions, like starts_with. For simple column selection and bare column names, just use select

    – camille
    Mar 8 at 20:50











  • Tyank you @camille. I never knew about everything(). I'll accept as answer if you want some SO karma brownie points?

    – Doug Fir
    Mar 8 at 20:51











  • Related Move a column conveniently

    – markus
    Mar 8 at 20:59












  • 1





    mtcars %>% select(hp, everything())

    – camille
    Mar 8 at 20:49






  • 1





    You generally only need select_at for helper functions, like starts_with. For simple column selection and bare column names, just use select

    – camille
    Mar 8 at 20:50











  • Tyank you @camille. I never knew about everything(). I'll accept as answer if you want some SO karma brownie points?

    – Doug Fir
    Mar 8 at 20:51











  • Related Move a column conveniently

    – markus
    Mar 8 at 20:59







1




1





mtcars %>% select(hp, everything())

– camille
Mar 8 at 20:49





mtcars %>% select(hp, everything())

– camille
Mar 8 at 20:49




1




1





You generally only need select_at for helper functions, like starts_with. For simple column selection and bare column names, just use select

– camille
Mar 8 at 20:50





You generally only need select_at for helper functions, like starts_with. For simple column selection and bare column names, just use select

– camille
Mar 8 at 20:50













Tyank you @camille. I never knew about everything(). I'll accept as answer if you want some SO karma brownie points?

– Doug Fir
Mar 8 at 20:51





Tyank you @camille. I never knew about everything(). I'll accept as answer if you want some SO karma brownie points?

– Doug Fir
Mar 8 at 20:51













Related Move a column conveniently

– markus
Mar 8 at 20:59





Related Move a column conveniently

– markus
Mar 8 at 20:59












2 Answers
2






active

oldest

votes


















0














dplyr imports the tidyselect helper function everything, which, as its name implies, selects everything. This can be used in combination with other column selection, so that in this case, you select hp, then everything—since a column can only occur once, this takes on the meaning hp and then everything else.





library(dplyr)

mtcars %>%
select(hp, everything()) %>%
head()
#> hp mpg cyl disp drat wt qsec vs am gear carb
#> Mazda RX4 110 21.0 6 160 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 110 21.0 6 160 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 93 22.8 4 108 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 110 21.4 6 258 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 175 18.7 8 360 3.15 3.440 17.02 0 0 3 2
#> Valiant 105 18.1 6 225 2.76 3.460 20.22 1 0 3 1


A couple base R ways could involve cbinding columns based on position. In this case, hp is the 4th column, so I bind together the 4th column of mtcars with everything but the 4th column of mtcars (same output as above):



cbind(mtcars[4], mtcars[-4])


Or based on name, where I'm subsetting first for column names equal to "hp", then not equal to "hp":



cbind(mtcars[names(mtcars) == "hp"], mtcars[names(mtcars) != "hp"])


I'm sure there are other base R ways as well--definitely could rig something up with subset.






share|improve this answer






























    1














    library(tidyverse)

    mtcars %>%
    select(hp, everything())
    #> hp mpg cyl disp drat wt qsec vs am gear carb
    #> Mazda RX4 110 21.0 6 160.0 3.90 2.620 16.46 0 1 4 4
    #> Mazda RX4 Wag 110 21.0 6 160.0 3.90 2.875 17.02 0 1 4 4
    #> Datsun 710 93 22.8 4 108.0 3.85 2.320 18.61 1 1 4 1
    #> Hornet 4 Drive 110 21.4 6 258.0 3.08 3.215 19.44 1 0 3 1
    #> Hornet Sportabout 175 18.7 8 360.0 3.15 3.440 17.02 0 0 3 2
    #> Valiant 105 18.1 6 225.0 2.76 3.460 20.22 1 0 3 1
    #> Duster 360 245 14.3 8 360.0 3.21 3.570 15.84 0 0 3 4
    #> Merc 240D 62 24.4 4 146.7 3.69 3.190 20.00 1 0 4 2
    #> Merc 230 95 22.8 4 140.8 3.92 3.150 22.90 1 0 4 2
    #> Merc 280 123 19.2 6 167.6 3.92 3.440 18.30 1 0 4 4
    #> Merc 280C 123 17.8 6 167.6 3.92 3.440 18.90 1 0 4 4
    #> Merc 450SE 180 16.4 8 275.8 3.07 4.070 17.40 0 0 3 3
    #> Merc 450SL 180 17.3 8 275.8 3.07 3.730 17.60 0 0 3 3
    #> Merc 450SLC 180 15.2 8 275.8 3.07 3.780 18.00 0 0 3 3
    #> Cadillac Fleetwood 205 10.4 8 472.0 2.93 5.250 17.98 0 0 3 4
    #> Lincoln Continental 215 10.4 8 460.0 3.00 5.424 17.82 0 0 3 4
    #> Chrysler Imperial 230 14.7 8 440.0 3.23 5.345 17.42 0 0 3 4
    #> Fiat 128 66 32.4 4 78.7 4.08 2.200 19.47 1 1 4 1
    #> Honda Civic 52 30.4 4 75.7 4.93 1.615 18.52 1 1 4 2
    #> Toyota Corolla 65 33.9 4 71.1 4.22 1.835 19.90 1 1 4 1
    #> Toyota Corona 97 21.5 4 120.1 3.70 2.465 20.01 1 0 3 1
    #> Dodge Challenger 150 15.5 8 318.0 2.76 3.520 16.87 0 0 3 2
    #> AMC Javelin 150 15.2 8 304.0 3.15 3.435 17.30 0 0 3 2
    #> Camaro Z28 245 13.3 8 350.0 3.73 3.840 15.41 0 0 3 4
    #> Pontiac Firebird 175 19.2 8 400.0 3.08 3.845 17.05 0 0 3 2
    #> Fiat X1-9 66 27.3 4 79.0 4.08 1.935 18.90 1 1 4 1
    #> Porsche 914-2 91 26.0 4 120.3 4.43 2.140 16.70 0 1 5 2
    #> Lotus Europa 113 30.4 4 95.1 3.77 1.513 16.90 1 1 5 2
    #> Ford Pantera L 264 15.8 8 351.0 4.22 3.170 14.50 0 1 5 4
    #> Ferrari Dino 175 19.7 6 145.0 3.62 2.770 15.50 0 1 5 6
    #> Maserati Bora 335 15.0 8 301.0 3.54 3.570 14.60 0 1 5 8
    #> Volvo 142E 109 21.4 4 121.0 4.11 2.780 18.60 1 1 4 2


    Created on 2019-03-08 by the reprex package (v0.2.1)






    share|improve this answer























      Your Answer






      StackExchange.ifUsing("editor", function ()
      StackExchange.using("externalEditor", function ()
      StackExchange.using("snippets", function ()
      StackExchange.snippets.init();
      );
      );
      , "code-snippets");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "1"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55070758%2fmake-a-feature-the-first-column-in-data-frame%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0














      dplyr imports the tidyselect helper function everything, which, as its name implies, selects everything. This can be used in combination with other column selection, so that in this case, you select hp, then everything—since a column can only occur once, this takes on the meaning hp and then everything else.





      library(dplyr)

      mtcars %>%
      select(hp, everything()) %>%
      head()
      #> hp mpg cyl disp drat wt qsec vs am gear carb
      #> Mazda RX4 110 21.0 6 160 3.90 2.620 16.46 0 1 4 4
      #> Mazda RX4 Wag 110 21.0 6 160 3.90 2.875 17.02 0 1 4 4
      #> Datsun 710 93 22.8 4 108 3.85 2.320 18.61 1 1 4 1
      #> Hornet 4 Drive 110 21.4 6 258 3.08 3.215 19.44 1 0 3 1
      #> Hornet Sportabout 175 18.7 8 360 3.15 3.440 17.02 0 0 3 2
      #> Valiant 105 18.1 6 225 2.76 3.460 20.22 1 0 3 1


      A couple base R ways could involve cbinding columns based on position. In this case, hp is the 4th column, so I bind together the 4th column of mtcars with everything but the 4th column of mtcars (same output as above):



      cbind(mtcars[4], mtcars[-4])


      Or based on name, where I'm subsetting first for column names equal to "hp", then not equal to "hp":



      cbind(mtcars[names(mtcars) == "hp"], mtcars[names(mtcars) != "hp"])


      I'm sure there are other base R ways as well--definitely could rig something up with subset.






      share|improve this answer



























        0














        dplyr imports the tidyselect helper function everything, which, as its name implies, selects everything. This can be used in combination with other column selection, so that in this case, you select hp, then everything—since a column can only occur once, this takes on the meaning hp and then everything else.





        library(dplyr)

        mtcars %>%
        select(hp, everything()) %>%
        head()
        #> hp mpg cyl disp drat wt qsec vs am gear carb
        #> Mazda RX4 110 21.0 6 160 3.90 2.620 16.46 0 1 4 4
        #> Mazda RX4 Wag 110 21.0 6 160 3.90 2.875 17.02 0 1 4 4
        #> Datsun 710 93 22.8 4 108 3.85 2.320 18.61 1 1 4 1
        #> Hornet 4 Drive 110 21.4 6 258 3.08 3.215 19.44 1 0 3 1
        #> Hornet Sportabout 175 18.7 8 360 3.15 3.440 17.02 0 0 3 2
        #> Valiant 105 18.1 6 225 2.76 3.460 20.22 1 0 3 1


        A couple base R ways could involve cbinding columns based on position. In this case, hp is the 4th column, so I bind together the 4th column of mtcars with everything but the 4th column of mtcars (same output as above):



        cbind(mtcars[4], mtcars[-4])


        Or based on name, where I'm subsetting first for column names equal to "hp", then not equal to "hp":



        cbind(mtcars[names(mtcars) == "hp"], mtcars[names(mtcars) != "hp"])


        I'm sure there are other base R ways as well--definitely could rig something up with subset.






        share|improve this answer

























          0












          0








          0







          dplyr imports the tidyselect helper function everything, which, as its name implies, selects everything. This can be used in combination with other column selection, so that in this case, you select hp, then everything—since a column can only occur once, this takes on the meaning hp and then everything else.





          library(dplyr)

          mtcars %>%
          select(hp, everything()) %>%
          head()
          #> hp mpg cyl disp drat wt qsec vs am gear carb
          #> Mazda RX4 110 21.0 6 160 3.90 2.620 16.46 0 1 4 4
          #> Mazda RX4 Wag 110 21.0 6 160 3.90 2.875 17.02 0 1 4 4
          #> Datsun 710 93 22.8 4 108 3.85 2.320 18.61 1 1 4 1
          #> Hornet 4 Drive 110 21.4 6 258 3.08 3.215 19.44 1 0 3 1
          #> Hornet Sportabout 175 18.7 8 360 3.15 3.440 17.02 0 0 3 2
          #> Valiant 105 18.1 6 225 2.76 3.460 20.22 1 0 3 1


          A couple base R ways could involve cbinding columns based on position. In this case, hp is the 4th column, so I bind together the 4th column of mtcars with everything but the 4th column of mtcars (same output as above):



          cbind(mtcars[4], mtcars[-4])


          Or based on name, where I'm subsetting first for column names equal to "hp", then not equal to "hp":



          cbind(mtcars[names(mtcars) == "hp"], mtcars[names(mtcars) != "hp"])


          I'm sure there are other base R ways as well--definitely could rig something up with subset.






          share|improve this answer













          dplyr imports the tidyselect helper function everything, which, as its name implies, selects everything. This can be used in combination with other column selection, so that in this case, you select hp, then everything—since a column can only occur once, this takes on the meaning hp and then everything else.





          library(dplyr)

          mtcars %>%
          select(hp, everything()) %>%
          head()
          #> hp mpg cyl disp drat wt qsec vs am gear carb
          #> Mazda RX4 110 21.0 6 160 3.90 2.620 16.46 0 1 4 4
          #> Mazda RX4 Wag 110 21.0 6 160 3.90 2.875 17.02 0 1 4 4
          #> Datsun 710 93 22.8 4 108 3.85 2.320 18.61 1 1 4 1
          #> Hornet 4 Drive 110 21.4 6 258 3.08 3.215 19.44 1 0 3 1
          #> Hornet Sportabout 175 18.7 8 360 3.15 3.440 17.02 0 0 3 2
          #> Valiant 105 18.1 6 225 2.76 3.460 20.22 1 0 3 1


          A couple base R ways could involve cbinding columns based on position. In this case, hp is the 4th column, so I bind together the 4th column of mtcars with everything but the 4th column of mtcars (same output as above):



          cbind(mtcars[4], mtcars[-4])


          Or based on name, where I'm subsetting first for column names equal to "hp", then not equal to "hp":



          cbind(mtcars[names(mtcars) == "hp"], mtcars[names(mtcars) != "hp"])


          I'm sure there are other base R ways as well--definitely could rig something up with subset.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Mar 8 at 21:05









          camillecamille

          7,87531833




          7,87531833























              1














              library(tidyverse)

              mtcars %>%
              select(hp, everything())
              #> hp mpg cyl disp drat wt qsec vs am gear carb
              #> Mazda RX4 110 21.0 6 160.0 3.90 2.620 16.46 0 1 4 4
              #> Mazda RX4 Wag 110 21.0 6 160.0 3.90 2.875 17.02 0 1 4 4
              #> Datsun 710 93 22.8 4 108.0 3.85 2.320 18.61 1 1 4 1
              #> Hornet 4 Drive 110 21.4 6 258.0 3.08 3.215 19.44 1 0 3 1
              #> Hornet Sportabout 175 18.7 8 360.0 3.15 3.440 17.02 0 0 3 2
              #> Valiant 105 18.1 6 225.0 2.76 3.460 20.22 1 0 3 1
              #> Duster 360 245 14.3 8 360.0 3.21 3.570 15.84 0 0 3 4
              #> Merc 240D 62 24.4 4 146.7 3.69 3.190 20.00 1 0 4 2
              #> Merc 230 95 22.8 4 140.8 3.92 3.150 22.90 1 0 4 2
              #> Merc 280 123 19.2 6 167.6 3.92 3.440 18.30 1 0 4 4
              #> Merc 280C 123 17.8 6 167.6 3.92 3.440 18.90 1 0 4 4
              #> Merc 450SE 180 16.4 8 275.8 3.07 4.070 17.40 0 0 3 3
              #> Merc 450SL 180 17.3 8 275.8 3.07 3.730 17.60 0 0 3 3
              #> Merc 450SLC 180 15.2 8 275.8 3.07 3.780 18.00 0 0 3 3
              #> Cadillac Fleetwood 205 10.4 8 472.0 2.93 5.250 17.98 0 0 3 4
              #> Lincoln Continental 215 10.4 8 460.0 3.00 5.424 17.82 0 0 3 4
              #> Chrysler Imperial 230 14.7 8 440.0 3.23 5.345 17.42 0 0 3 4
              #> Fiat 128 66 32.4 4 78.7 4.08 2.200 19.47 1 1 4 1
              #> Honda Civic 52 30.4 4 75.7 4.93 1.615 18.52 1 1 4 2
              #> Toyota Corolla 65 33.9 4 71.1 4.22 1.835 19.90 1 1 4 1
              #> Toyota Corona 97 21.5 4 120.1 3.70 2.465 20.01 1 0 3 1
              #> Dodge Challenger 150 15.5 8 318.0 2.76 3.520 16.87 0 0 3 2
              #> AMC Javelin 150 15.2 8 304.0 3.15 3.435 17.30 0 0 3 2
              #> Camaro Z28 245 13.3 8 350.0 3.73 3.840 15.41 0 0 3 4
              #> Pontiac Firebird 175 19.2 8 400.0 3.08 3.845 17.05 0 0 3 2
              #> Fiat X1-9 66 27.3 4 79.0 4.08 1.935 18.90 1 1 4 1
              #> Porsche 914-2 91 26.0 4 120.3 4.43 2.140 16.70 0 1 5 2
              #> Lotus Europa 113 30.4 4 95.1 3.77 1.513 16.90 1 1 5 2
              #> Ford Pantera L 264 15.8 8 351.0 4.22 3.170 14.50 0 1 5 4
              #> Ferrari Dino 175 19.7 6 145.0 3.62 2.770 15.50 0 1 5 6
              #> Maserati Bora 335 15.0 8 301.0 3.54 3.570 14.60 0 1 5 8
              #> Volvo 142E 109 21.4 4 121.0 4.11 2.780 18.60 1 1 4 2


              Created on 2019-03-08 by the reprex package (v0.2.1)






              share|improve this answer



























                1














                library(tidyverse)

                mtcars %>%
                select(hp, everything())
                #> hp mpg cyl disp drat wt qsec vs am gear carb
                #> Mazda RX4 110 21.0 6 160.0 3.90 2.620 16.46 0 1 4 4
                #> Mazda RX4 Wag 110 21.0 6 160.0 3.90 2.875 17.02 0 1 4 4
                #> Datsun 710 93 22.8 4 108.0 3.85 2.320 18.61 1 1 4 1
                #> Hornet 4 Drive 110 21.4 6 258.0 3.08 3.215 19.44 1 0 3 1
                #> Hornet Sportabout 175 18.7 8 360.0 3.15 3.440 17.02 0 0 3 2
                #> Valiant 105 18.1 6 225.0 2.76 3.460 20.22 1 0 3 1
                #> Duster 360 245 14.3 8 360.0 3.21 3.570 15.84 0 0 3 4
                #> Merc 240D 62 24.4 4 146.7 3.69 3.190 20.00 1 0 4 2
                #> Merc 230 95 22.8 4 140.8 3.92 3.150 22.90 1 0 4 2
                #> Merc 280 123 19.2 6 167.6 3.92 3.440 18.30 1 0 4 4
                #> Merc 280C 123 17.8 6 167.6 3.92 3.440 18.90 1 0 4 4
                #> Merc 450SE 180 16.4 8 275.8 3.07 4.070 17.40 0 0 3 3
                #> Merc 450SL 180 17.3 8 275.8 3.07 3.730 17.60 0 0 3 3
                #> Merc 450SLC 180 15.2 8 275.8 3.07 3.780 18.00 0 0 3 3
                #> Cadillac Fleetwood 205 10.4 8 472.0 2.93 5.250 17.98 0 0 3 4
                #> Lincoln Continental 215 10.4 8 460.0 3.00 5.424 17.82 0 0 3 4
                #> Chrysler Imperial 230 14.7 8 440.0 3.23 5.345 17.42 0 0 3 4
                #> Fiat 128 66 32.4 4 78.7 4.08 2.200 19.47 1 1 4 1
                #> Honda Civic 52 30.4 4 75.7 4.93 1.615 18.52 1 1 4 2
                #> Toyota Corolla 65 33.9 4 71.1 4.22 1.835 19.90 1 1 4 1
                #> Toyota Corona 97 21.5 4 120.1 3.70 2.465 20.01 1 0 3 1
                #> Dodge Challenger 150 15.5 8 318.0 2.76 3.520 16.87 0 0 3 2
                #> AMC Javelin 150 15.2 8 304.0 3.15 3.435 17.30 0 0 3 2
                #> Camaro Z28 245 13.3 8 350.0 3.73 3.840 15.41 0 0 3 4
                #> Pontiac Firebird 175 19.2 8 400.0 3.08 3.845 17.05 0 0 3 2
                #> Fiat X1-9 66 27.3 4 79.0 4.08 1.935 18.90 1 1 4 1
                #> Porsche 914-2 91 26.0 4 120.3 4.43 2.140 16.70 0 1 5 2
                #> Lotus Europa 113 30.4 4 95.1 3.77 1.513 16.90 1 1 5 2
                #> Ford Pantera L 264 15.8 8 351.0 4.22 3.170 14.50 0 1 5 4
                #> Ferrari Dino 175 19.7 6 145.0 3.62 2.770 15.50 0 1 5 6
                #> Maserati Bora 335 15.0 8 301.0 3.54 3.570 14.60 0 1 5 8
                #> Volvo 142E 109 21.4 4 121.0 4.11 2.780 18.60 1 1 4 2


                Created on 2019-03-08 by the reprex package (v0.2.1)






                share|improve this answer

























                  1












                  1








                  1







                  library(tidyverse)

                  mtcars %>%
                  select(hp, everything())
                  #> hp mpg cyl disp drat wt qsec vs am gear carb
                  #> Mazda RX4 110 21.0 6 160.0 3.90 2.620 16.46 0 1 4 4
                  #> Mazda RX4 Wag 110 21.0 6 160.0 3.90 2.875 17.02 0 1 4 4
                  #> Datsun 710 93 22.8 4 108.0 3.85 2.320 18.61 1 1 4 1
                  #> Hornet 4 Drive 110 21.4 6 258.0 3.08 3.215 19.44 1 0 3 1
                  #> Hornet Sportabout 175 18.7 8 360.0 3.15 3.440 17.02 0 0 3 2
                  #> Valiant 105 18.1 6 225.0 2.76 3.460 20.22 1 0 3 1
                  #> Duster 360 245 14.3 8 360.0 3.21 3.570 15.84 0 0 3 4
                  #> Merc 240D 62 24.4 4 146.7 3.69 3.190 20.00 1 0 4 2
                  #> Merc 230 95 22.8 4 140.8 3.92 3.150 22.90 1 0 4 2
                  #> Merc 280 123 19.2 6 167.6 3.92 3.440 18.30 1 0 4 4
                  #> Merc 280C 123 17.8 6 167.6 3.92 3.440 18.90 1 0 4 4
                  #> Merc 450SE 180 16.4 8 275.8 3.07 4.070 17.40 0 0 3 3
                  #> Merc 450SL 180 17.3 8 275.8 3.07 3.730 17.60 0 0 3 3
                  #> Merc 450SLC 180 15.2 8 275.8 3.07 3.780 18.00 0 0 3 3
                  #> Cadillac Fleetwood 205 10.4 8 472.0 2.93 5.250 17.98 0 0 3 4
                  #> Lincoln Continental 215 10.4 8 460.0 3.00 5.424 17.82 0 0 3 4
                  #> Chrysler Imperial 230 14.7 8 440.0 3.23 5.345 17.42 0 0 3 4
                  #> Fiat 128 66 32.4 4 78.7 4.08 2.200 19.47 1 1 4 1
                  #> Honda Civic 52 30.4 4 75.7 4.93 1.615 18.52 1 1 4 2
                  #> Toyota Corolla 65 33.9 4 71.1 4.22 1.835 19.90 1 1 4 1
                  #> Toyota Corona 97 21.5 4 120.1 3.70 2.465 20.01 1 0 3 1
                  #> Dodge Challenger 150 15.5 8 318.0 2.76 3.520 16.87 0 0 3 2
                  #> AMC Javelin 150 15.2 8 304.0 3.15 3.435 17.30 0 0 3 2
                  #> Camaro Z28 245 13.3 8 350.0 3.73 3.840 15.41 0 0 3 4
                  #> Pontiac Firebird 175 19.2 8 400.0 3.08 3.845 17.05 0 0 3 2
                  #> Fiat X1-9 66 27.3 4 79.0 4.08 1.935 18.90 1 1 4 1
                  #> Porsche 914-2 91 26.0 4 120.3 4.43 2.140 16.70 0 1 5 2
                  #> Lotus Europa 113 30.4 4 95.1 3.77 1.513 16.90 1 1 5 2
                  #> Ford Pantera L 264 15.8 8 351.0 4.22 3.170 14.50 0 1 5 4
                  #> Ferrari Dino 175 19.7 6 145.0 3.62 2.770 15.50 0 1 5 6
                  #> Maserati Bora 335 15.0 8 301.0 3.54 3.570 14.60 0 1 5 8
                  #> Volvo 142E 109 21.4 4 121.0 4.11 2.780 18.60 1 1 4 2


                  Created on 2019-03-08 by the reprex package (v0.2.1)






                  share|improve this answer













                  library(tidyverse)

                  mtcars %>%
                  select(hp, everything())
                  #> hp mpg cyl disp drat wt qsec vs am gear carb
                  #> Mazda RX4 110 21.0 6 160.0 3.90 2.620 16.46 0 1 4 4
                  #> Mazda RX4 Wag 110 21.0 6 160.0 3.90 2.875 17.02 0 1 4 4
                  #> Datsun 710 93 22.8 4 108.0 3.85 2.320 18.61 1 1 4 1
                  #> Hornet 4 Drive 110 21.4 6 258.0 3.08 3.215 19.44 1 0 3 1
                  #> Hornet Sportabout 175 18.7 8 360.0 3.15 3.440 17.02 0 0 3 2
                  #> Valiant 105 18.1 6 225.0 2.76 3.460 20.22 1 0 3 1
                  #> Duster 360 245 14.3 8 360.0 3.21 3.570 15.84 0 0 3 4
                  #> Merc 240D 62 24.4 4 146.7 3.69 3.190 20.00 1 0 4 2
                  #> Merc 230 95 22.8 4 140.8 3.92 3.150 22.90 1 0 4 2
                  #> Merc 280 123 19.2 6 167.6 3.92 3.440 18.30 1 0 4 4
                  #> Merc 280C 123 17.8 6 167.6 3.92 3.440 18.90 1 0 4 4
                  #> Merc 450SE 180 16.4 8 275.8 3.07 4.070 17.40 0 0 3 3
                  #> Merc 450SL 180 17.3 8 275.8 3.07 3.730 17.60 0 0 3 3
                  #> Merc 450SLC 180 15.2 8 275.8 3.07 3.780 18.00 0 0 3 3
                  #> Cadillac Fleetwood 205 10.4 8 472.0 2.93 5.250 17.98 0 0 3 4
                  #> Lincoln Continental 215 10.4 8 460.0 3.00 5.424 17.82 0 0 3 4
                  #> Chrysler Imperial 230 14.7 8 440.0 3.23 5.345 17.42 0 0 3 4
                  #> Fiat 128 66 32.4 4 78.7 4.08 2.200 19.47 1 1 4 1
                  #> Honda Civic 52 30.4 4 75.7 4.93 1.615 18.52 1 1 4 2
                  #> Toyota Corolla 65 33.9 4 71.1 4.22 1.835 19.90 1 1 4 1
                  #> Toyota Corona 97 21.5 4 120.1 3.70 2.465 20.01 1 0 3 1
                  #> Dodge Challenger 150 15.5 8 318.0 2.76 3.520 16.87 0 0 3 2
                  #> AMC Javelin 150 15.2 8 304.0 3.15 3.435 17.30 0 0 3 2
                  #> Camaro Z28 245 13.3 8 350.0 3.73 3.840 15.41 0 0 3 4
                  #> Pontiac Firebird 175 19.2 8 400.0 3.08 3.845 17.05 0 0 3 2
                  #> Fiat X1-9 66 27.3 4 79.0 4.08 1.935 18.90 1 1 4 1
                  #> Porsche 914-2 91 26.0 4 120.3 4.43 2.140 16.70 0 1 5 2
                  #> Lotus Europa 113 30.4 4 95.1 3.77 1.513 16.90 1 1 5 2
                  #> Ford Pantera L 264 15.8 8 351.0 4.22 3.170 14.50 0 1 5 4
                  #> Ferrari Dino 175 19.7 6 145.0 3.62 2.770 15.50 0 1 5 6
                  #> Maserati Bora 335 15.0 8 301.0 3.54 3.570 14.60 0 1 5 8
                  #> Volvo 142E 109 21.4 4 121.0 4.11 2.780 18.60 1 1 4 2


                  Created on 2019-03-08 by the reprex package (v0.2.1)







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Mar 8 at 20:56









                  dylanjmdylanjm

                  825216




                  825216



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Stack Overflow!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55070758%2fmake-a-feature-the-first-column-in-data-frame%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Identity Server 4 is not redirecting to Angular app after login2019 Community Moderator ElectionIdentity Server 4 and dockerIdentityserver implicit flow unauthorized_clientIdentityServer Hybrid Flow - Access Token is null after user successful loginIdentity Server to MVC client : Page Redirect After loginLogin with Steam OpenId(oidc-client-js)Identity Server 4+.NET Core 2.0 + IdentityIdentityServer4 post-login redirect not working in Edge browserCall to IdentityServer4 generates System.NullReferenceException: Object reference not set to an instance of an objectIdentityServer4 without HTTPS not workingHow to get Authorization code from identity server without login form

                      2005 Ahvaz unrest Contents Background Causes Casualties Aftermath See also References Navigation menue"At Least 10 Are Killed by Bombs in Iran""Iran"Archived"Arab-Iranians in Iran to make April 15 'Day of Fury'"State of Mind, State of Order: Reactions to Ethnic Unrest in the Islamic Republic of Iran.10.1111/j.1754-9469.2008.00028.x"Iran hangs Arab separatists"Iran Overview from ArchivedConstitution of the Islamic Republic of Iran"Tehran puzzled by forged 'riots' letter""Iran and its minorities: Down in the second class""Iran: Handling Of Ahvaz Unrest Could End With Televised Confessions""Bombings Rock Iran Ahead of Election""Five die in Iran ethnic clashes""Iran: Need for restraint as anniversary of unrest in Khuzestan approaches"Archived"Iranian Sunni protesters killed in clashes with security forces"Archived

                      Can't initialize raids on a new ASUS Prime B360M-A motherboard2019 Community Moderator ElectionSimilar to RAID config yet more like mirroring solution?Can't get motherboard serial numberWhy does the BIOS entry point start with a WBINVD instruction?UEFI performance Asus Maximus V Extreme