Exception when using a udf function with Spark DataFrameScala Spark - task not serializableWrite HDFS outputfile with ScalaSpark Task not serializable with lag Window functionHow to combine dataset from each input stream into onespark kafka producer serializablespark structured streaming (java): task not serializableSpark Scala: Task Not serializable errorScala: Task not serializable in RDD map Caused by json4s “implicit val formats = DefaultFormats”Spark streaming nested execution serialization issuesintermittent issues with saveAsTextFile while running spark ETL
Does the Crossbow Expert feat's extra crossbow attack work with the reaction attack from a Hunter ranger's Giant Killer feature?
How to I force windows to use a specific version of SQLCMD?
Pre-Employment Background Check With Consent For Future Checks
Sound waves in different octaves
What should be the ideal length of sentences in a blog post for ease of reading?
Review your own paper in Mathematics
Would this string work as string?
When and why was runway 07/25 at Kai Tak removed?
Why does a 97 / 92 key piano exist by Bösendorfer?
Do I have to take mana from my deck or hand when tapping a dual land?
Make a Bowl of Alphabet Soup
Language involving irrational number is not a CFL
Giving feedback to someone without sounding prejudiced
Storage of electrolytic capacitors - how long?
Is there a reason to prefer HFS+ over APFS for disk images in High Sierra and/or Mojave?
Do I have to know the General Relativity theory to understand the concept of inertial frame?
Sigmoid with a slope but no asymptotes?
Proving an identity involving cross products and coplanar vectors
Possible Eco thriller, man invents a device to remove rain from glass
Why does the Persian emissary display a string of crowned skulls?
Why is the Sun approximated as a black body at ~ 5800 K?
What is the meaning of "You've never met a graph you didn't like?"
What the heck is gets(stdin) on site coderbyte?
What is this high flying aircraft over Pennsylvania?
Exception when using a udf function with Spark DataFrame
Scala Spark - task not serializableWrite HDFS outputfile with ScalaSpark Task not serializable with lag Window functionHow to combine dataset from each input stream into onespark kafka producer serializablespark structured streaming (java): task not serializableSpark Scala: Task Not serializable errorScala: Task not serializable in RDD map Caused by json4s “implicit val formats = DefaultFormats”Spark streaming nested execution serialization issuesintermittent issues with saveAsTextFile while running spark ETL
In Spark version: 2.4.0, I am trying to execute the code below on the given DataFrame:
unfoldedDF:org.apache.spark.sql.DataFrame
movieid:integer
words:array -- element:string
tokens:string
val tokensWithDf = unfoldedDF.groupBy("tokens").agg(countDistinct("movieid") as "df")
tokensWithDf.show()
The new dataframe created is tokensWithDf:org.apache.spark.sql.DataFrame
tokens:string
df:long
On it the following operation is done.
def findIdf(x : Long) : Double = scala.math.log10((42306).toDouble/x)
val sqlfunc = udf(findIdf _)
tokensWithDf.withColumn("idf", sqlfunc(col("df"))).show()
It fails with the following exception:
org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:403)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:393)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:162)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2519)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1.apply(RDD.scala:866)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1.apply(RDD.scala:865)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:379)
at org.apache.spark.rdd.RDD.mapPartitionsWithIndex(RDD.scala:865)
at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:616)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:143)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$5.apply(SparkPlan.scala:183)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:180)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:131)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:66)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:75)
at org.apache.spark.sql.execution.ResultCacheManager.getOrComputeResult(ResultCacheManager.scala:497)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollectResult(limit.scala:48)
scala apache-spark dataframe user-defined-functions
add a comment |
In Spark version: 2.4.0, I am trying to execute the code below on the given DataFrame:
unfoldedDF:org.apache.spark.sql.DataFrame
movieid:integer
words:array -- element:string
tokens:string
val tokensWithDf = unfoldedDF.groupBy("tokens").agg(countDistinct("movieid") as "df")
tokensWithDf.show()
The new dataframe created is tokensWithDf:org.apache.spark.sql.DataFrame
tokens:string
df:long
On it the following operation is done.
def findIdf(x : Long) : Double = scala.math.log10((42306).toDouble/x)
val sqlfunc = udf(findIdf _)
tokensWithDf.withColumn("idf", sqlfunc(col("df"))).show()
It fails with the following exception:
org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:403)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:393)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:162)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2519)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1.apply(RDD.scala:866)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1.apply(RDD.scala:865)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:379)
at org.apache.spark.rdd.RDD.mapPartitionsWithIndex(RDD.scala:865)
at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:616)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:143)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$5.apply(SparkPlan.scala:183)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:180)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:131)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:66)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:75)
at org.apache.spark.sql.execution.ResultCacheManager.getOrComputeResult(ResultCacheManager.scala:497)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollectResult(limit.scala:48)
scala apache-spark dataframe user-defined-functions
what is the full stack trace of error?
– deo
Mar 7 at 22:26
You need to give more information, such as questions, full stack trace, and source code.
– howie
Mar 7 at 23:44
Your code works fine on Spark 2.3.2. Please add more details about the version and the entire stacktrace so the error can be reproduced.
– philantrovert
Mar 8 at 13:40
The full stack trace has been added to the original question. The version of Spark is 2.4.0.
– Rajarshi Chattopadhyay
Mar 9 at 14:55
The code works on Spark 2.4.0. Can you share the entire stacktrace ?
– Tej
Mar 9 at 21:08
add a comment |
In Spark version: 2.4.0, I am trying to execute the code below on the given DataFrame:
unfoldedDF:org.apache.spark.sql.DataFrame
movieid:integer
words:array -- element:string
tokens:string
val tokensWithDf = unfoldedDF.groupBy("tokens").agg(countDistinct("movieid") as "df")
tokensWithDf.show()
The new dataframe created is tokensWithDf:org.apache.spark.sql.DataFrame
tokens:string
df:long
On it the following operation is done.
def findIdf(x : Long) : Double = scala.math.log10((42306).toDouble/x)
val sqlfunc = udf(findIdf _)
tokensWithDf.withColumn("idf", sqlfunc(col("df"))).show()
It fails with the following exception:
org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:403)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:393)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:162)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2519)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1.apply(RDD.scala:866)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1.apply(RDD.scala:865)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:379)
at org.apache.spark.rdd.RDD.mapPartitionsWithIndex(RDD.scala:865)
at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:616)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:143)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$5.apply(SparkPlan.scala:183)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:180)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:131)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:66)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:75)
at org.apache.spark.sql.execution.ResultCacheManager.getOrComputeResult(ResultCacheManager.scala:497)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollectResult(limit.scala:48)
scala apache-spark dataframe user-defined-functions
In Spark version: 2.4.0, I am trying to execute the code below on the given DataFrame:
unfoldedDF:org.apache.spark.sql.DataFrame
movieid:integer
words:array -- element:string
tokens:string
val tokensWithDf = unfoldedDF.groupBy("tokens").agg(countDistinct("movieid") as "df")
tokensWithDf.show()
The new dataframe created is tokensWithDf:org.apache.spark.sql.DataFrame
tokens:string
df:long
On it the following operation is done.
def findIdf(x : Long) : Double = scala.math.log10((42306).toDouble/x)
val sqlfunc = udf(findIdf _)
tokensWithDf.withColumn("idf", sqlfunc(col("df"))).show()
It fails with the following exception:
org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:403)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:393)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:162)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2519)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1.apply(RDD.scala:866)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1.apply(RDD.scala:865)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:379)
at org.apache.spark.rdd.RDD.mapPartitionsWithIndex(RDD.scala:865)
at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:616)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:143)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$5.apply(SparkPlan.scala:183)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:180)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:131)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:66)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:75)
at org.apache.spark.sql.execution.ResultCacheManager.getOrComputeResult(ResultCacheManager.scala:497)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollectResult(limit.scala:48)
scala apache-spark dataframe user-defined-functions
scala apache-spark dataframe user-defined-functions
edited Mar 9 at 14:59
Rajarshi Chattopadhyay
asked Mar 7 at 21:58
Rajarshi ChattopadhyayRajarshi Chattopadhyay
63
63
what is the full stack trace of error?
– deo
Mar 7 at 22:26
You need to give more information, such as questions, full stack trace, and source code.
– howie
Mar 7 at 23:44
Your code works fine on Spark 2.3.2. Please add more details about the version and the entire stacktrace so the error can be reproduced.
– philantrovert
Mar 8 at 13:40
The full stack trace has been added to the original question. The version of Spark is 2.4.0.
– Rajarshi Chattopadhyay
Mar 9 at 14:55
The code works on Spark 2.4.0. Can you share the entire stacktrace ?
– Tej
Mar 9 at 21:08
add a comment |
what is the full stack trace of error?
– deo
Mar 7 at 22:26
You need to give more information, such as questions, full stack trace, and source code.
– howie
Mar 7 at 23:44
Your code works fine on Spark 2.3.2. Please add more details about the version and the entire stacktrace so the error can be reproduced.
– philantrovert
Mar 8 at 13:40
The full stack trace has been added to the original question. The version of Spark is 2.4.0.
– Rajarshi Chattopadhyay
Mar 9 at 14:55
The code works on Spark 2.4.0. Can you share the entire stacktrace ?
– Tej
Mar 9 at 21:08
what is the full stack trace of error?
– deo
Mar 7 at 22:26
what is the full stack trace of error?
– deo
Mar 7 at 22:26
You need to give more information, such as questions, full stack trace, and source code.
– howie
Mar 7 at 23:44
You need to give more information, such as questions, full stack trace, and source code.
– howie
Mar 7 at 23:44
Your code works fine on Spark 2.3.2. Please add more details about the version and the entire stacktrace so the error can be reproduced.
– philantrovert
Mar 8 at 13:40
Your code works fine on Spark 2.3.2. Please add more details about the version and the entire stacktrace so the error can be reproduced.
– philantrovert
Mar 8 at 13:40
The full stack trace has been added to the original question. The version of Spark is 2.4.0.
– Rajarshi Chattopadhyay
Mar 9 at 14:55
The full stack trace has been added to the original question. The version of Spark is 2.4.0.
– Rajarshi Chattopadhyay
Mar 9 at 14:55
The code works on Spark 2.4.0. Can you share the entire stacktrace ?
– Tej
Mar 9 at 21:08
The code works on Spark 2.4.0. Can you share the entire stacktrace ?
– Tej
Mar 9 at 21:08
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55053454%2fexception-when-using-a-udf-function-with-spark-dataframe%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55053454%2fexception-when-using-a-udf-function-with-spark-dataframe%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
what is the full stack trace of error?
– deo
Mar 7 at 22:26
You need to give more information, such as questions, full stack trace, and source code.
– howie
Mar 7 at 23:44
Your code works fine on Spark 2.3.2. Please add more details about the version and the entire stacktrace so the error can be reproduced.
– philantrovert
Mar 8 at 13:40
The full stack trace has been added to the original question. The version of Spark is 2.4.0.
– Rajarshi Chattopadhyay
Mar 9 at 14:55
The code works on Spark 2.4.0. Can you share the entire stacktrace ?
– Tej
Mar 9 at 21:08